2021-09-07 本文目录为什么要联邦学习 【论文笔记】Advances and Open Problems in Federated Learning 什么是联邦学习 联邦学习的核心 联邦学习模型的生命周期 【论文笔记】Federated Learning: Challenges, Methods, and Future Directions 联邦学习的挑战 当前研究进展 未来方向 联邦学习概念遇到的问题、为什么重要人工智能获得巨大的成功,但不容忽略的是这些良好的AI都需要大
图像加密算法——Logistic混沌置乱加密 这里再根据Logistic混沌进行另一种置乱:位置置乱。位置置乱,顾名思义就是把图像中某一像素点的位置,移动到另一目的点。我们知道这个目的点当然是越随机越好。这个过程,所有像素的灰度值都没有改变,只是进行了位置的置乱,所以其直方图不会发生改变。生成混沌序列Logistic迭代了M*N次,得到M*N个(0,1)之间的浮点数序列(记做序列A),将序列A中的每个元素乘以M*N,也就是说将A扩展...
图像加密算法——Logistic混沌置乱 Logistic函数是源于一个人口统计的动力学系统,其系统方程形式如下:X(k+1) = u \* X(k) \* [1 - X(k)],(k=0,1,…,n)混沌的解释顾名思义就是一种无序的、不可预测的、混乱的、摸不到头、摸不到尾的状态。混沌最大的特性就是对初始值敏感。通俗的说,就是蝴蝶效应,在某某某地方,一个蝴蝶轻轻煽动一下翅膀就会产生很大的飓风。为什么这个方程可以称作混...
csp记录 做了一些csp基础题,记录了结题过程中自己没有考虑的地方以及一些技巧。求中位数/* * 求n个数的中位数 * * 对于一组有有限个数的数据来说,它们的中位数是这样的一种数:这群数据里的一半的数据比它大,而另外一半数据比它小。 * 计算有限个数的数据的中位数的方法是:把所有的同类数据按照 **大小的顺序排列** 。 * 数组的排序可以使用c++ algorithm里面的sort()和r...
c++向量(vector) vector概念向量(Vector)是一个封装了动态大小数组的顺序容器(Sequence Container)。跟任意其它类型容器一样,它能够存放各种类型的对象。可以简单的认为,向量是一个能够存放任意类型的动态数组。使用引入头文件 #include<vector>构造vector<int>a; // 构造一个空的vectorvector...
项目开发中引入外部字体库 前端web项目下载字体库(如:方正兰亭中黑_GBK.ttf)全局引入@font-face { font-family: "方正兰亭中黑_GBK"; src: url("方正兰亭中黑_GBK.ttf") format("truetype");}使用.content{font-family: 方正兰亭中黑;}小程序引入外部字体库下载字体库(如:方正...
JS滚动事件及滚动条位置设置 为了学习JS的滚动事件,我们先来认识dom的几个属性1. scrollTop 获取或设置一个元素的内容垂直滚动的像素数,当一个元素的内容没有产生垂直方向的滚动条,那么它的 scrollTop 值为02. scrollHeight scrollHeight(内容的实际高度+上下padding<如果没有限制div的height,即height是自适应的,那么scroll...
隐写分布特征保持 笔记 该章讲解了分布特征保持问题,并介绍了分布保持的一些方法3.1 分布保持问题本节主要通过实例来引出分布保持问题并描述其难度3.1.1 LSBR分布问题与K平方分析JPEG系数特点对称性。以0为中心达到最大值,两侧分布近似对称单侧单调性。以0为中心达到最大值,两侧单调下降梯度下降性。小值样点多,大致样点少,分布曲线两侧下降梯度珠江减小了解JPEG特点,是为了对其隐写进行约束,隐...
基本嵌入方法 LSBR(LSB 替换)LSBW(LSB 匹配 或 加减1)调色板图像嵌入量化调制基础概念格:格是由N维欧氏空间中数值点组成的加群,由有规律分布于整个空间的离散点组成信号量化:量化就是通过四舍五入的方法将采样后的N维实数信号值转换成一种离散样点的过程。离散数学子格:设(L,∨,∧)是一格,T是L的非空子集,如果T关于两种运算都是封闭的,则称(T,∨,∧)是(L,...
图像编码概念总结 概念图像编码就是对将要处理的图像源数据按照一定的规则进行变换和组合,从而使得可以用尽可能少的符号来表示尽可能多的信息。源图像中常常存在各种各样的冗余:空间冗余、时间冗余、信息熵冗余、结构冗余、知识冗余等,这就使得通过编码来进行压缩成为了可能。分类根据压缩效果有损编码有损编码在编码的过程中把不相干的信息都删除了,只能对原图像进行近似的重建无损编码无损编码的压缩算法中...
StegaStamp: Invisible Hyperlinks in Physical Photographs 阅读报告 文章的基本信息标题: StegaStamp: Invisible Hyperlinks in Physical Photographs作者:Matthew Tancik∗ Ben Mildenhall∗ Ren Ng论文地址: https://arxiv.org/abs/1904.05343论文摘要原文Imagine a world in which each photo, p...
决策树学习记录 前言记录自己的学习思路,搬用了较多原文。 且为了偷懒,原文处多用省略号第四章、决策树4.1、基本流程在介绍基本流程前,我们先来了解一下决策树的概念,以及决策树学习的目的。由左侧注释可知: 决策树既可以指学习方法,也可以指学得的树。要根据叙述的上下文环境而定。现在我介绍的是学习方法。 决策树是一类基于树结构来进行决策的机器学习方法。对于树结构,大家一定都不陌生,这里我简单介绍一下决...
线性模型 本文为自己学习《西瓜书》时做的一些笔记,方便知识点的梳理复习。线性模型定义: 学的一个通过属性的线性组合来进行预测的函数。形式: 函数/向量优点:模型简单,已于建模蕴含着机器学习中一些基本思想,一些强大的非线性模型可以通过引入层级结构或高为映射得到。如lny 与 x函数之间的关系。向量w,可以直观表达各属性在预测中的重要性。种类回归任务的线性模型二分类任...
JdbcTemplete的基本使用 在JdbcTemplate类中执行SQL语句的方法大致分为3类:方法功能说明要求execute()用于执行DDL语句,如:建表了解update()用于执行DML语句,实现对数据库表的增删改操作掌握queryXxx()用于执行DQL语句,实现对数据库表的各种查询的操作一定掌握execute()方法:参数:sql语句(建表)Strin...
MySQL事务 事务事务由单独单元的一个或多个SQL语句组成,在这个单元中,每个MySQL语句是相互依赖的。而整个单独单 元作为一个不可分割的整体,如果单元中某条SQL语句一旦执行失败或产生错误,整个单元会回滚。所有受到影 响的数据将返回到事物开始以前的状态;如果单元中的所有SQL语句均执行成功,则事物被顺利执行。事务的四个特点:原子性,原子性是指事务是一个不可分割的工作单位,事务中的操作要么 都发生,要...
MySQL约束和分类 约束定义为了保证数据的一致性和完整性,SQL规范以约束的方式来对表数据进行额外的条件限制解释约束是表级的强制规定(并不准确,因为由列级约束的存在)规定约束建表时规定约束建表后,通过ALTER TABLE语句来规定约束的种类非空约束(NOT NULL)唯一约束 (UNIQUE)主键 (PRIMARY KEY)外键 (FOREIGN KEY)DEF...
MySQL常见函数 MySQL常见函数注释:[]代表可有可无字符函数| 函数 | 解释 ||: — |: ----- || LOWER(str) | 字母转小写 || UPPER(str) | 字母转大写 || CONCAT(str,str,…) | 将多个字符串拼接 || SUBSTR(str FROM pos FOR len) | 字母转小写 || LENGTH(str) | 获取字符...
MySQL子查询 子查询定义:其他语句内部的select语句,称为子查询或内查询注意事项:子查询要放在括号里面子查询放在比较条件右侧单行操作符1对应单行子查询,多行操作符2对应多行子查询非法使用子查询多行查询使用单行比较符子查询不返回任何行,或者为NULL分类where型子查询(把内层查询结果当作外层查询的比较条件)例: 查询id最大的一件商品(使用排序+分页实现)SELE...
MySQL创建和管理表 创建和管理表数据库创建数据库create database school查看当前所有数据库show databases使用一个数据库use school命名规则长度,包含字符,避免使用保留字和系统方法名,保证字段名和类型的一致性对表进行操作创建表语法CREATE TABLE student( sid INT PRIMARY KE...
python多线程和多进程 文章目录多线程和多进程的区分多进程的基本使用daemon,join()LockSemaphore进程间得通信QueuePipePool感谢多线程和多进程的区分多线程和多进程最大的不同在于,多进程中,同一个变量,各自有一份拷贝存在于每个进程中,互不影响;而多线程中,所有变量都由所有线程共享,所以,任何一个变量都可以被任何一个线程修改,因此,线程之间共享数据最大的危险在于多个线程同时改一个变量,把...