莫烦python-pytorch-3.1regression

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt


x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # 二维
y = x.pow(2) + 0.2*torch.rand(x.size())

x, y = Variable(x), Variable(y)

# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()

class Net(torch.nn.Module):
    def __init__(self, n_features, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_features, n_hidden)
        self.predict = torch.nn.Linear(n_hidden, n_output)

    def forward(self, x):
        x = F.relu(self.hidden(x))
        x = self.predict(x)
        return x

net = Net(1, 10, 1)
print(net)

plt.ion()
plt.show()

optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
loss_func = torch.nn.MSELoss()

for t in range(200):
    prediction = net(x)

    loss = loss_func(prediction, y)

    optimizer.zero_grad() # 梯度设为0
    loss.backward()
    optimizer.step() # 优化梯度
    if t % 5 == 0:
        # plot and show learning process
        plt.cla()
        plt.scatter(x.data.numpy(), y.data.numpy())
        plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
        plt.text(0.5, 0, 'Loss=%.4f' % loss.data, fontdict={'size':20, 'color':'red'})
        plt.pause(0.1)

plt.ioff()
plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刷子c

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值