树状数组(简单介绍)

树状数组解决的问题:

假如有这样一种情景,先输入一个长度为n的数组,然后我们有如下两种操作:

  1. 输入一个数m,输出数组中下标1~m的前缀和
  2. 对某个指定下标的数进行值的修改

多次执行上述两种操作;

常规方法

对于一个的数组,如果需要求1~m的前缀和我们可以将其从下标1开始对m个数进行求和,对于值的修改,我们可以直接通过下标找到要修改的数,然后更新前缀和,对于一次操作显然没什么问题,但对于 n n n次操作,时间复杂度就达到了 O ( n 2 ) O(n^2) O(n2) O ( n ) O(n) O(n),这样的方法就显得不适用了。

树状数组

在这里插入图片描述
如图,对于一个长度为n的数组,A数组存放的是数组的初始值,引入一个辅助数组C;

C1 = A1
C2 = C1 + A2 = A1 + A2
C3 = A3
C4 = C2 + C3 + A4 = A1 + A2 + A3 + A4
C5 = A5
C6 = C5 + A6 = A5 + A6
C7 = A7
C8 = C4 + C6 + C7 + A8 = A1 + A2 + A3 + A4 + A5 + A6 + A7 + A8

我们称C[i]的值为下标为i的数所管辖的数的和,下标为i的数所管辖的元素的个数为 2 k 2^k 2k个(ki的二进制的末尾0的个数),例如:

  • i = 8 = 1000,末尾3个0,故k = 3,所管辖的个数为 2 3 = 8 2^3 = 8 23=8C8是8个数的和;
  • i = 5 = 0101,末尾没有0,故k = 0,所管辖的个数为 2 0 = 1 2^0 = 1 20=1C5是一个数的和;

而对于输入的数m,我们要求编号为m的数的前缀和 A 1 ⋯ A m A_1\cdots A_m A1Am,按照上面说的, s u m m = C i 1 + C i 2 + ⋯ sum_m= C_{i_1} + C_{i_2} + \cdots summ=Ci1+Ci2+,这里mC[i]的对应关系是这样的,对于查询的m,将它转换成二进制后,不断对末尾的1的位置进行-1的操作,直到全部为0停止,中间得到的值就是c[i],例如:

  • m = 7 s u m 7 = C 7 + C 6 + C 4 sum_7 = C_7 + C_6 + C_4 sum7=C7+C6+C4,7的二进制为0111 C 7 C_7 C7得到),对0111的末尾1的位置-1,得到0110 = 6 C 6 C_6 C6得到),再对0110末尾1位置-1,得到0100 = 4 C 4 C_4 C4得到),最后对0100末尾1位置-1后得到0000(结束),计算停止,至此 C 7 , C 6 , C 4 C_7,C_6,C_4 C7C6C4全部得到,求和后就是m = 7时它的前缀和;
  • m = 6 s u m 6 = C 6 + C 4 sum_6 = C_6 + C_4 sum6=C6+C4,6的2进制等于·0110·,经过两次变换后为0100(C4)和0000(结束信号),那么求和后同样也得到了预计的结果;

那么求前缀和的代码如下:

int lowbit(int m){
    return m & (-m);
}

int getSum(int m){
	int ans = 0;
    while(m > 0){
        ans += C[m];
        m -= lowbit(m);
    }
    return ans;
}

关于m & (-m)这是一个很巧妙的地方,如13的二进制表示为1101,那么-13的二进制表示为0010 + 0001 = 0011,那么1101 & 0011 = 0001,二进制末尾1的位置是 2 0 2^0 20,将13 - 0001 = 12,再对12执行lowbit操作,1100 & 0100 = 0100,二进制末尾1的位置是 2 2 2^2 22,将12 - 0100 = 8,再对8执行lowbit操作,0100 & 1100 = 0100,二进制位是 2 2 2^2 228 - 0100 = 0(结束操作),通过循环得到的13,12,8,则 s u m 13 = C 13 + C 12 + C 8 sum_{13} = C_{13} + C_{12} + C_8 sum13=C13+C12+C8.

建立树状数组

对于一个输入的数组A,我们一次读取的过程,就可以想成是一个不断更新值的过程,所以建树与单点更新值是一样的,即把 A 1 ⋯ A n A_1\cdots A_n A1An从0更新成我们输入的A[i],所以一边读入A[i],一边将C[i]涉及到的祖先节点值更新,完成输入后树状数组C也就建立成功了。

下面说说如何更新节点值:
在这里插入图片描述
假设更新A[2] = 5,通过观察我们得知,如果修改了A[2]的值,那么管辖A[2]C[2],C[4],C[8]的前缀和都要加上5(所有的祖先节点),那么和查询类似,我们如何得到C2的所有祖先节点呢,依旧是上述的巧妙的方法,但是我们把它倒过来用,对于要更新i位置的值,我们把i转换成二进制,不断对二进制最后一个1的位置+1,直到达到数组下标的最大值n结束,对于给出的例子i = 2,假设数组下标上限n = 8i转换成二进制后等于0010 C 2 C_2 C2),对末尾1的位置进行+1,得到0100 C 4 C_4 C4),对末尾的1的位置进行+1,得到1000 C 8 C_8 C8),循环结束,对 C 2 , C 4 , C 8 C_2,C_4,C_8 C2C4C8的前缀和都要+5,当然不能忘记对A[2]的值+5,单点更新值过程结束。

void update(int x, int value){
    A[x] += value;	// 修改源数组
    while(x <= n){
        C[x] += value;
        x += lowbit(x);
    }
}

完整代码

#include<stdio.h>
#include<string.h>

int a[10005];
int c[10005];
int n;

int lowbit(int x){
    return x&(-x);
}

int getSum(int x){
    int ans = 0;
    while(x > 0){
        ans += c[x];
        x -= lowbit(x);
    }
    return ans;
}

void update(int x, int value){
    a[x] += value;
    while(x <= n){
        c[x] += value;
        x += lowbit(x);
    }
}

int main(){
    while(scanf("%d", &n)!=EOF){
        memset(a, 0, sizeof(a));
        memset(c, 0, sizeof(c));
        for(int i = 1; i <= n; i++){
            scanf("%d", &a[i]);
            update(i, a[i]);
        }
        int ans = getSum(n-1);
        printf("%d\n", ans);
    }   
    return 0;
} 

参考:https://www.cnblogs.com/findview/archive/2019/08/01/11281628.html

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值