秘籍之树上蹦迪--LCA

炒鸡炒鸡炒鸡经典的模板题!

直接上代码啦

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <ctime>
#define maxn 500000
using namespace std;

int n,m,s,u,v,num;
int fir[maxn*2],d[maxn*2],p[maxn*2][21];

struct qwq
{
	int to;
	int next;
}e[maxn*4];

int read()
{
	int x=0;char ch=' ';
	while(ch<'0'||ch>'9') ch=getchar();
	while(ch>='0'&&ch<='9')
	{
		x=x*10+ch-'0';
		ch=getchar();
	}
	return x;
}

void addedge(int u,int v)
{
	num++;
	e[num].to=v;
	e[num].next=fir[u];
	fir[u]=num;
}

void dfs(int u,int fa)
{
	d[u]=d[fa]+1;p[u][0]=fa;
	for(int i=1;(1<<i)<=d[u];i++)
	{
		 p[u][i]=p[p[u][i-1]][i-1];
	}
	for(int i=fir[u];i;i=e[i].next)
	{
		if(e[i].to!=fa) dfs(e[i].to,u);
	}
}

int lca(int u,int v)
{
	if(d[u]>d[v]) swap(u,v);
	for(int i=20;i>=0;--i)
	{
		if(d[u]<=d[v]-(1<<i)) v=p[v][i];
	}
	if(u==v) return u;
	for(int i=20;i>=0;--i)
	{
		if(p[u][i]==p[v][i])continue;
		u=p[u][i];v=p[v][i];
	}
	return p[u][0];
}

int main()
{
	n=read();m=read();s=read();
	for(int i=1;i<n;++i)
	{
		u=read();v=read();
		addedge(u,v);addedge(v,u);
	}
	dfs(s,0);
	for(int i=1;i<=m;++i)
	{
		u=read();v=read();
		printf("%d\n",lca(u,v));
	}
	return 0;
}

稍微有点疑惑的是为什么节点上跳2^i时不用重新遍历新节点上移2^i,因为2^(i-1)+2^(i-1)=2^i啦,树的深度一般一般一般不会超过2^20啦


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值