cudnn安装教程使用conda安装管理环境,非常便捷,降低了深度学习的门槛,然而,这里面的cuda和cudnn以及cudatookit都会让大家很迷惑!
1、使用conda安装tensorflow gpu版本
conda create -n tf python==3.7
conda install tensorflow-gpu
默认安装cudatoolkit和cudnn,也就是说cuda和cudnn都不需要你手动安装,一行命令搞定cuda和cudnn,如果你电脑上没有安装官网的cuda和cudnn也不要紧!运行程序会使用conda自带的
2、使用conda安装pytorch gpu版本
pytorch官网上提供的安装命令
conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge
可以看到只安装了cudatoolkit,没有安装cudnn,而且使用pip安装,也只安装了cudatoolkit
那么conda 安装的 pytorch到底有木有cudnn,
假设没有安装cudnn,我们手动装一个cudnn,看看会不会加速,下面我们用实验验证:
因此,需要手动安装cudnn,那么问题就来了,cudnn和cuda是共存的,conda下只提供了libcuda.so动态链接库,不能提供加速,所以还得手动安装cuda
先安装cuda,指定cuda_home,那么程序就会优先使用咱们手动装的cuda,而不是conda自己装的cuda,cuda安装教程
在安装cudnn,cudnn安装教程
安装前cudnn前,使用某个程序,进行测试,显示
安装完成cudnn后,使用同一程序,进行测试,显示
可见手动安装的cudnn,并没有起到加速作用!!!
因此,conda安装pytorch,也是傻瓜式安装,不需要手动安装cuda和cudnn,只需安装显卡驱动就可以!
这就很玄学了,有知道的大佬,留言区请多多指教!!!