sklearn.model_selection.train_test_split

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

实例:

train_set,test_set=train_test_split(housing,test_size=0.2,random_state=42)

编写函数实现数据集划分:参考《机器学习实战:基于Scikit-Learn和TensorFlow

import pandas as pd
import numpy as np
import hashlib

def test_set_check(identifier,test_ratio,hash):
    return hash(np.int64(identifier)).digest()[-1]<256*test_ratio

def split_train_test_by_id(data,test_ratio,id_column,hash=hashlib.md5):
    ids=data[id_column]
    in_test_set=ids.apply(lambda id_: test_set_check(id_,test_ratio,hash))
    return data.loc[~in_test_set],data.loc[in_test_set]
id=housing["longitude"]*1000+housing["latitude"]
housing_with_id=pd.DataFrame(id,columns=['id'])
train_set,test_set=split_train_test_by_id(housing_with_id,0.2,"id")

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值