【linux】(9)目录介绍 /boot用途:存放用于系统引导时使用的各种文件,是启动Linux时使用的一些核心文件,包括一些连接文件以及镜像文件。(不要动)内容:包括启动引导程序和内核镜像文件。如果这个目录有问题,系统可能无法启动。示例:/dev用途:存放设备文件, dev是Device(设备)的缩写, 存放的是Linux的外部设备,在Linux中访问设备的方式和访问文件的方式是相同的。内容:设备文件是一种特殊类型的文件,它们充当设备(如硬盘、终端、打印机等)的接口。Linux 中一切皆文件,设备也是文件。示例:
【linux】(1)文件操作及vi 存在,Vi 会打开该文件;命令:显示所有文件,包括隐藏文件。命令:在文件内容中搜索特定字符串。命令:查看文件和目录磁盘使用情况。命令:创建一个文件并写入内容。向右缩进第 1 到第 10 行。向左缩进第 1 到第 10 行。命令:创建一个新的空文件。删除第 1 到第 10 行。命令:创建一个新的目录。命令:详细列出目录内容。命令:分页查看文件内容。命令:查看文件开头部分。命令:查看文件结尾部分。命令:在目录中搜索文件。命令:将内容写入文件。命令:更改文件所有者。命令:打包和解包文件。命令:压缩和解压文件。
【unity】(3) Terrain Editor 在Unity的Hierarchy视图中,右键选择来创建一个新的Terrain对象。: 选择Hierarchy中的Terrain对象,Inspector视图会显示Terrain的各种属性和工具。
【机器学习算法介绍】(8)梯度提升树 梯度提升树(Gradient Boosting Trees,简称GBT)是一种强大的机器学习算法,用于回归和分类问题。它属于集成学习方法中的Boosting家族,其核心思想是逐步添加弱预测模型(通常是决策树),以尽量减少模型的损失函数。
【机器学习算法介绍】(7)AdaBoost AdaBoost(Adaptive Boosting)是一种集成学习算法,它的核心思想是将多个弱学习器组合成一个强学习器。在机器学习中,一个弱学习器通常指的是比随机猜测略好的模型(例如,决策树),而AdaBoost通过迭代地调整数据集中各个样本的权重,使得模型能够关注到之前被错误预测的样本,从而提升模型的性能。
【机器学习算法介绍】(6)随机森林 随机森林(Random Forest)是一种集成学习方法,主要用于分类和回归任务。它通过构建多个决策树(Decision Trees)并汇总它们的预测结果来提高整体模型的性能。随机森林的核心思想在于“集体智慧”——单个模型(决策树)可能有限,但多个模型集成在一起可以取得更好的效果。
【机器学习算法介绍】(5)支持向量机算法 支持向量机(Support Vector Machine, SVM)是一种强大的监着学习算法,用于分类、回归和异常检测。SVM在处理中小型复杂数据集时特别有效,尤其是在类别分隔不明显的情况下。
【机器学习算法介绍】(4)逻辑回归 逻辑回归(Logistic Regression)是一种广泛使用的线性模型,主要用于处理分类问题,尤其是二分类问题。尽管名称中包含“回归”二字,逻辑回归实际上是一种分类方法。其核心思想是通过逻辑函数将线性回归的输出映射到概率空间中,以此来进行分类决策。
【机器学习算法介绍】(1)K近邻算法 K近邻算法(K-Nearest Neighbors,KNN)是一种基本的分类与回归方法。这个算法的思想非常简单、直观,但却非常强大。它既可以用于分类,也可以用于回归。