一.代数优化
代数优化是查询优化的关键环节之一,涉及到基于关系代数表达式的转换和改进。这些表达式通常在查询处理过程中,由查询分析和检查步骤生成。通过应用一系列代数规则和启发式方法,代数优化的目标是找到一个成本最低的执行计划。
1.关系代数表达式变换规则
以下是一些关系代数表达式变换的基本规则,它们是代数优化过程中常用的工具:
-
交换律(Commutativity):连接和笛卡儿积操作满足交换律,即改变操作顺序不会影响结果。
- 笛卡儿积交换律: E 1 × E 2 = E 2 × E 1 E_1 \times E_2 = E_2 \times E_1 E1×E2=E2×E1
- 自然连接交换律: E 1 ⋈ E 2 = E 2 ⋈ E 1 E_1 \bowtie E_2 = E_2 \bowtie E_1 E1⋈E2=E2⋈E1
- 自然连接交换律: E 1 ⋈ F E 2 = E 2 ⋈ F E 1 E_1 \bowtie_F E_2 = E_2 \bowtie_F E_1 E1⋈FE2=E2⋈FE1
-
结合律(Associativity):连接和笛卡儿积还满足结合律,允许我们在不改变结果的情况下,重新组织操作的结合方式。
- 笛卡儿积结合律: ( E 1 × E 2 ) × E 3 = E 1 × ( E 2 × E 3 ) (E_1 \times E_2) \times E_3 = E_1 \times (E_2 \times E_3) (E1×E2)×E3=E1×(E2×E3)
- 自然连接结合律: ( E 1 ⋈ E 2 ) ⋈ E 3 = E 1 ⋈ ( E 2 ⋈ E 3 ) (E_1 \bowtie E_2) \bowtie E_3 = E_1 \bowtie (E_2 \bowtie E_3) (E1⋈E2)⋈E