Java实现快速排序、归并排序

快速排序原理:

第一步:给定一个有若干元素的数组,在这个数组中选定一个基准数据(通常是第一个或最后一个);
第二步:从数组两端开始依次轮流与基准数据比较,将比基准数据小的放到基准数据左边区间(或右边),将比其大的数据放到基准数据的右边区间(或左边);
第三步:对左右两个区间分别重复第二步的操作,直到各区间只剩下一个数。

代码实现:

public class Test {

	public static void quickSort(int[] array, int begin, int end) {
		if(begin < end) {
			int index = getIndex(array , begin , end);//获取基数位置
			//递归调用
			quickSort(array, begin , index-1);
			quickSort(array , index + 1 ,end);
		}
	}
	
	public static int getIndex(int[] arr, int begin, int end) {
		int temp = arr[begin];//定基准数据
		while(begin < end) {//两端数据轮流与基数比较
			while(begin < end && arr[end] >= temp) {//比较后面的数据与基准数据
				end --;
			}
			arr[begin] = arr[end];//将小的数据放到左边区间
			while(begin < end && arr[begin] <= temp) {//比较前面的数据与基准数据
				begin++;
			}
			arr[end] = arr[begin];//将大的数据放到左边区间
		}
		arr[begin] = temp;
		return begin;//返回基准数据的位置
	}
	public static void main(String[] args) {
		int[] arr = {7,3,4,6,2,8,1,5};
		quickSort(arr, 0, arr.length-1);
		for(int i=0; i<arr.length;i++) {
			System.out.print(arr[i]+"\t");
		}
	}

}

总结

快速排序,说白了就是给基准数据找其正确索引位置的过程.(查资料的时候,某个大佬说的)

归并排序

归并排序与快速排序有些相似,也是利用分治的思想。先将待排序的数组分成若干子序列,将每个子序列排好顺序后,再将排好序的两个(或两个以上)子序列合并成一个新的有序序列,一直重复这个操作,知道剩下一个完整的序列。

public class Test {
    public static void main(String[] args) {
     int[] arr = {4,2,5,1,7,3,8,6};
        mergeSort(arr,0,arr.length-1);
     for (int i=0;i<arr.length;i++){
         System.out.println(arr[i]);
     }
    }

    public static void mergeSort(int[] array,int low,int high){
        int mid = (low + high)/2;
        if(low < high){
            mergeSort(array,low,mid);
            mergeSort(array,mid+1,high);
            sort(array,low,mid,high);
        }
    }

    pub lic static void sort(int[] array, int low , int mid , int high){
        int[] temp = new int[high-low+1];
        int leftLow = low;
        int rightLow = mid+1;
        int k=0;
        while(leftLow<= mid && rightLow <= high){
            if(array[leftLow] < array[rightLow]) {
                temp[k++] = array[leftLow++];
            }else temp[k++] = array[rightLow++];
        }
        while(leftLow <= mid){
            temp[k++] = array[leftLow++];
        }
        while(rightLow <= high){
            temp[k++] = array[rightLow++];
        }
        for( k=0; k < temp.length ; k++){
            array[k+low] = temp[k];
        }
    }
}

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
快速排序归并排序都是常见的排序算法,它们的时间复杂度如下: 1. 快速排序(Quick Sort)的平均时间复杂度为O(nlogn),最坏情况下的时间复杂度为O(n^2)。 - 在平均情况下,快速排序的时间复杂度为O(nlogn)。这是因为快速排序使用分治策略,每次选择一个基准元素,并将数组分成两个子数组,然后递归地对子数组进行排序。在平均情况下,每次划分将数组分成大小接近一半的两个子数组,因此总的比较和交换次数为O(nlogn)。 - 在最坏情况下,如果每次划分都选择了当前最大或最小的元素作为基准,那么快速排序的时间复杂度将退化到O(n^2)。这种情况下,每次划分只能将数组分成一个子数组和一个空数组,递归调用的次数为n,因此总的比较和交换次数为1 + 2 + ... + n-1 = n * (n-1) / 2,即O(n^2)。 2. 归并排序(Merge Sort)的时间复杂度始终稳定在O(nlogn)。 - 归并排序使用分治策略,将待排序的数组分成两个子数组,分别进行排序,然后将两个有序子数组合并成一个有序数组。在归并的过程中,需要将元素逐个比较并放入临时数组中。在每一层的归并过程中,需要进行n次比较和交换操作。总共需要进行logn层的归并,因此总的比较和交换次数为n * logn,即O(nlogn)。 需要注意的是,以上时间复杂度是对算法的整体评估。实际应用中,算法的具体实现和优化策略也会对时间复杂度产生影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值