- 博客(10)
- 资源 (2)
- 收藏
- 关注
转载 论文解读 | Explaining and Harnessing Adversarial Examples
核心观点:神经网络对于对抗样本的攻击如此脆弱的原因,是因为网络的线性本质。文章还提出了最早的 FGSM (Fast Gradient Sigh Method)对抗样本生成方法。通过在训练样本中加入一定的对抗样本(随机生成),可以对模型起到一定的正则化作用。insight利用非线性可以抵抗对抗样本,但是非线性的模型又没有线性模型好训练优化,所以未来的思路可能是:设计一套优化方法,可以用来很好地训练非线性模型。不太懂的地方5 ADVERSARIAL TRAINING OF LINEAR MODEL
2020-09-14 15:39:25 356
原创 lenet回顾
lenet回顾一、np.set_printoptions(threshold=np.inf)设置print输出无省略二、在Conv2D中给属性filters(卷积核个数)、kernel_size(卷积核大小)、activation(激活函数)、strides(步长)进行赋值三、在model.compile中对optimizer(优化器)、loss(损失函数)、metrics进行赋值optimizer=AdaGrad、 RMSPropRMSProp、 Adam、 AdaDeltaloss=t
2020-09-08 15:51:03 149
原创 tensorflow学习笔记 ResNet
学习自北京大学曹建老师课程经过卷积的特征与直接映射的特征相加,减少了因为神经网络层数堆叠而引起的神经网络退化。Res块的两种相加形式:import tensorflow as tfimport osimport numpy as npfrom matplotlib import pyplot as pltfrom tensorflow.keras.layers import Conv2D, BatchNormalization, Activation, MaxPool2D, Dropo
2020-07-31 10:48:56 233
原创 tensorflow学习笔记4.5绘制ACC和LOSS曲线
import tensorflow as tfimport osimport numpy as npfrom matplotlib import pyplot as pltnp.set_printoptions(threshold=np.inf)mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data()x_train, x_test = x_train / 255.0, x_
2020-07-27 12:05:00 2665 1
原创 tensorflow学习笔记4.5 查看已保存的断点续训数据
1.print方法通过代码:np.set_printoptions(threshold=np.inf)来设置Print方法防止使用print时省略数据threshold表示展示数据的最大范围np.inf表示无限大print(model.trainable_variables)2.保存到文本file = open('./weights.txt', 'w')for v in model.trainable_variables: file.write(str(v.name) + '\
2020-07-25 12:00:05 156
原创 tensorflow 学习笔记4.4断点续训
tensorflow 学习笔记4.4断点续训读取保存模型保存模型读取保存模型读取保存模型命名为.ckpt文件checkpoint_save_path = "./checkpoint/mnist.ckpt"if os.path.exists(checkpoint_save_path + '.index'): print('-------------load the model-----------------') model.load_weights(checkpoint_save
2020-07-25 11:49:28 302
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人