LeetCode69--最近的请求次数、滑动窗口的最大值

这篇博客介绍了如何使用队列解决两个编程问题:一是设计一个RecentCounter类来计算过去3000毫秒内的请求数;二是实现一个算法找到数组中滑动窗口的最大值。在RecentCounter类中,通过队列删除过期的请求以计算当前范围内的请求数。而在滑动窗口最大值问题中,使用了双端队列保持元素的降序,确保窗口内的最大值始终位于队首。这两个问题都展示了队列在处理时间窗口和实时数据流问题中的应用。
摘要由CSDN通过智能技术生成

1.最近的请求次数

//写一个 RecentCounter 类来计算特定时间范围内最近的请求。 
//
// 请你实现 RecentCounter 类: 
//
// 
// RecentCounter() 初始化计数器,请求数为 0 。 
// int ping(int t) 在时间 t 添加一个新请求,其中 t 表示以毫秒为单位的某个时间,并返回过去 3000 毫秒内发生的所有请求数(包括新请求
//)。确切地说,返回在 [t-3000, t] 内发生的请求数。 
// 
//
// 保证 每次对 ping 的调用都使用比之前更大的 t 值。 
//
// 
//
// 示例: 
//
// 
//输入:
//["RecentCounter", "ping", "ping", "ping", "ping"]
//[[], [1], [100], [3001], [3002]]
//输出:
//[null, 1, 2, 3, 3]
//
//解释:
//RecentCounter recentCounter = new RecentCounter();
//recentCounter.ping(1);     // requests = [1],范围是 [-2999,1],返回 1
//recentCounter.ping(100);   // requests = [1, 100],范围是 [-2900,100],返回 2
//recentCounter.ping(3001);  // requests = [1, 100, 3001],范围是 [1,3001],返回 3
//recentCounter.ping(3002);  // requests = [1, 100, 3001, 3002],范围是 [2,3002],返回 
//3
// 
//
// 
//
// 提示: 
//
// 
// 1 <= t <= 109 
// 保证每次对 ping 调用所使用的 t 值都 严格递增 
// 至多调用 ping 方法 104 次 
// 
// Related Topics 队列

 最近的请求次数,直接考虑的是队列的一些基本函数操作,比较简单。

class RecentCounter {
    Queue queue = new LinkedList<Integer>();
    public RecentCounter() {
        queue.clear();
    }
    
    public int ping(int t) {
        queue.offer(t);
        while((int)queue.peek() < t-3000){
            queue.poll();
        }
        return queue.size();
    }
}

2.滑动窗口的最大值

//给定一个数组 nums 和滑动窗口的大小 k,请找出所有滑动窗口里的最大值。 
//
// 示例: 
//
// 输入: nums = [1,3,-1,-3,5,3,6,7], 和 k = 3
//输出: [3,3,5,5,6,7] 
//解释: 
//
//  滑动窗口的位置                最大值
//---------------               -----
//[1  3  -1] -3  5  3  6  7       3
// 1 [3  -1  -3] 5  3  6  7       3
// 1  3 [-1  -3  5] 3  6  7       5
// 1  3  -1 [-3  5  3] 6  7       5
// 1  3  -1  -3 [5  3  6] 7       6
// 1  3  -1  -3  5 [3  6  7]      7 
//
// 
//
// 提示: 
//
// 你可以假设 k 总是有效的,在输入数组不为空的情况下,1 ≤ k ≤ 输入数组的大小。 
//
// 注意:本题与主站 239 题相同:https://leetcode-cn.com/problems/sliding-window-maximum/ 
// Related Topics 队列 Sliding Window

 这个是一个比较复杂的题,这个主站的239是一个困难题。首先它采用的数据结构是双向队列,可以从头也可以从尾部进行出队和入队。其次它利用双向队列做了一个递减的排列,让队列中的第一个元素始终都是最大的。还有考虑到窗口的长度,当我们的窗口往后滑动的时候,就需要让不在滑动窗口中的元素出栈。于是就有了:

public int[] maxSlidingWindow(int[] nums, int k) {
        int len = nums.length;
        if(len == 0){
            return nums;
        }
        int[] arr = new int[nums.length-k+1];
        int arr_index = 0;
        //创建一个单调递增的双向队列
        Deque<Integer> deque = new LinkedList<>();
        //先将一个窗口的值按照规则入队
        for (int i = 0; i < k; i++) {
            while(!deque.isEmpty() && deque.peekLast()<nums[i]){
                deque.removeLast();
            }
            deque.offerLast(nums[i]);
        }
        //存到数组里,队头元素
        arr[arr_index++] = deque.peekFirst();
        //移动窗口
        for (int i = k; i < len; i++) {
            //对应咱们的红色情况,则是窗口的前一个元素等于队头元素,那么我们就将队头元素出栈
            if(nums[i-k] == deque.peekFirst()){
                deque.removeFirst();
            }
            while(!deque.isEmpty() && deque.peekLast() < nums[i]){
                deque.removeLast();
            }
            deque.offer(nums[i]);
            arr[arr_index++] = deque.peekFirst();
        }
        return arr;
    }
}
//leetcode submit region end(Prohibit modification and deletion)

}

具体的题解可见:

https://leetcode-cn.com/problems/hua-dong-chuang-kou-de-zui-da-zhi-lcof/solution/yi-shi-pin-sheng-qian-yan-shuang-duan-du-mbga/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值