数据结构:平衡二叉树(AVL树)

1. 二叉排序树的问题

  • 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在

在这里插入图片描述

  • 问题分析:
  1. 左子树全部为空,从形式上看,更像一个单链表.
  2. 插入速度没有影响
  3. 查询速度明显降低(因为需要依次比较), 不能发挥BST的优势,因为每次还需要比较左子树,其查询速度比单链表还慢
  4. 解决方案-平衡二叉树(AVL)

2. 基本介绍

  1. 平衡二叉树也叫平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树, 可以保证查询效率较高。
  2. 具有以下特点:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。
  3. 举例说明,看看下面哪些AVL树

在这里插入图片描述

3. 应用案例-单旋转(左旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树,数列 {4,3,6,5,7,8}
  2. 思路分析(示意图)

问题:当插入8 时
rightHeight() - leftHeight() > 1 成立,此时,不再是一颗avl树了.
怎么处理–进行左旋转
1.创建一个新的节点 newNode (以4这个值创建)
,创建一个新的节点,值等于当前根节点的值
//把新节点的左子树设置了当前节点的左子树
2.newNode.left = left
//把新节点的右子树设置为当前节点的右子树的左子树
3.newNode.right =right.left;
//把当前节点的值换为右子节点的值
4.value=right.value;
//把当前节点的右子树设置成右子树的右子树
5.right=right.right;
//把当前节点的左子树设置为新节点
6.left=newLeft;

在这里插入图片描述

4. 应用案例-单旋转(右旋转)

  1. 要求: 给你一个数列,创建出对应的平衡二叉树.数列 {10,12, 8, 9, 7, 6}
  2. 思路分析(示意图)

问题:当插入6 时
leftHeight() - rightHeight() > 1 成立,此时,不再是一颗avl树了.
怎么处理–进行右旋转.[就是降低左子树的高度], 这里是将9 这个节点,通过右旋转,到右子树
1.创建一个新的节点 newNode (以10这个值创建)
,创建一个新的节点,值等于当前根节点的值
//把新节点的右子树设置了当前节点的右子树
2.newNode.right = right
//把新节点的左子树设置为当前节点的左子树的右子树
3.newNode.left =left.right;
//把当前节点的值换为左子节点的值
4.value=left.value;
//把当前节点的左子树设置成左子树的左子树
5.left=left.left;
//把当前节点的右子树设置为新节点
6.right=newLeft;

在这里插入图片描述

5. 应用案例-双旋转

  • 前面的两个数列,进行单旋转(即一次旋转)就可以将非平衡二叉树转成平衡二叉树,但是在某些情况下,单旋转不能完成平衡二叉树的转换。
  • 比如数列int[] arr = { 10, 11, 7, 6, 8, 9 };
  1. 问题分析
  • 运行原来的代码可以看到,并没有转成 AVL树.

在这里插入图片描述
2. 解决思路分析

1.当满足右旋转的条件时
2.如果它的左子树的右子树高度大于它的左子树的高度
3.先对当前这个节点的左节点进行左旋转
4.再对当前节点进行右旋转的操作即可

在这里插入图片描述
在这里插入图片描述

6. 完整代码实现

public class AvlTreeDemo {

    public static void main(String[] args) {
        int[] arr = {10, 11, 7, 6, 8, 9};
        // 创建一个avltree对象
        AvlTree avlTree = new AvlTree();
        // 添加节点
        for (int i = 0; i < arr.length; i++) {
            avlTree.add(new Node(arr[i]));
        }
        // 遍历
        System.out.println("中序遍历");
        avlTree.infixOrder();

        System.out.println("树的高度 = " + avlTree.getRoot().height());
        System.out.println("左子树高度 = " + avlTree.getRoot().leftHeight());
        System.out.println("右子树高度 = " + avlTree.getRoot().rightHeight());
        System.out.println("当前根节点 = " + avlTree.getRoot());
    }


    static class Node {
        int value;

        Node left;

        Node right;

        public Node(int value) {
            this.value = value;
        }

        // 返回以该节点为根节点的树的高度
        public int height() {
            return Math.max(left == null ? 0 : left.height(),
                    right == null ? 0 : right.height()) + 1;
        }

        // 返回左子树高度
        public int leftHeight() {
            if (left == null) {
                return 0;
            }
            return left.height();
        }

        // 返回右子树的高度
        public int rightHeight() {
            if (right == null) {
                return 0;
            }
            return right.height();
        }

        // 左旋方法
        private void leftRotate() {
            // 1.创建新的节点,以当前根节点的值
            Node newNode = new Node(value);
            // 2.把新的节点的左子树设置成当前节点的左子树
            newNode.left = left;
            // 3.把新节点的右子树设置成当前节点的右子树的左子树
            newNode.right = right.left;
            // 4.把当前节点的值换成右子节点的值
            value = right.value;
            // 5.把当前节点的右子树设置成当前节点右子树的右子树
            right = right.right;
            // 6.把当前节点的左子树设置成新的节点
            left = newNode;
        }

        // 右旋方法
        private void rightRotate() {
            Node newNode = new Node(value);
            newNode.right = right;
            newNode.left = left.right;
            value = left.value;
            left = left.left;
            right = newNode;
        }

        @Override
        public String toString() {
            return "Node{" + "value=" + value + '}';
        }

        /**
         * 递归添加节点,注意满足二叉排序树的要求
         *
         * @param node
         */
        public void add(Node node) {
            if (node == null) {
                return;
            }
            // 判断传入节点的值,和当前子树的根节点值的关系
            if (node.value < this.value) {
                // 如果当前节点左子节点为null
                if (this.left == null) {
                    this.left = node;
                } else {
                    // 递归向左子树添加
                    this.left.add(node);
                }
            } else { // 添加节点的值大于当前节点的值
                if (this.right == null) {
                    this.right = node;
                } else {
                    // 递归向右子树添加
                    this.right.add(node);
                }
            }
            // 当添加完一个节点后,如果 右子树的高度-左子树的高度>1,左旋转
            if (rightHeight() - leftHeight() > 1) {
                // 如果它的右子树的左子树的高度大于它的右子树的右子树的高度
                if (right != null && right.leftHeight() > right.rightHeight()) {
                    // 先对右子节点进行右旋
                    right.rightRotate();
                    // 然后再对当前节点进行左旋
                    leftRotate();
                } else {
                    // 直接左旋
                    leftRotate();
                }
                return;
            }
            // 当添加完一个节点后,如果 左子树的高度-右子树的高度>1,右旋
            if (leftHeight() - rightHeight() > 1) {
                // 如果它的左子树的右子树高度大于它的左子树的左子树高度
                if (left != null && left.rightHeight() > left.leftHeight()) {
                    // 先对左子节点进行左旋
                    left.leftRotate();
                    // 再对当前节点进行右旋
                    rightRotate();
                } else {
                    // 直接进行右旋
                    rightRotate();
                }
            }
        }

        /**
         * 中序遍历
         */
        public void infixOrder() {
            if (this.left != null) {
                this.left.infixOrder();
            }
            System.out.println(this);
            if (this.right != null) {
                this.right.infixOrder();
            }
        }

        /**
         * 查找要删除的节点
         *
         * @param value
         * @return
         */
        public Node search(int value) {
            // 找到就是该节点
            if (value == this.value) {
                return this;
            } else if (value < this.value) {
                // 如果要查找的值小于当前节点,向左子树递归查找
                if (this.left == null) {
                    return null;
                }
                return this.left.search(value);
            } else {
                // 如果带查找的值不小于当前节点,向右子树递归查找
                if (this.right == null) {
                    return null;
                }
                return this.right.search(value);
            }
        }

        /**
         * 查找带删除节点的父节点
         *
         * @param value 带查找的值
         * @return 要删除节点的父节点,如果没有就返回null
         */
        public Node searchParent(int value) {
            // 如果当前节点就是要删除的节点的父节点
            if ((this.left != null && this.left.value == value) ||
                    (this.right != null && this.right.value == value)) {
                return this;
            } else {
                // 如果查找的值小于当前节点的值,并且当前节点左子节点不为空
                if (value < this.value && this.left != null) {
                    // 向左子树递归查找
                    return this.left.searchParent(value);
                } else if (value > this.value && this.right != null) {
                    // 向右子树递归查找
                    return this.right.searchParent(value);
                } else {
                    // 没有找到父节点
                    return null;
                }
            }
        }
    }

    static class AvlTree {

        private Node root;

        public Node getRoot() {
            return root;
        }

        // 添加节点的方法
        public void add(Node node) {
            if (root == null) {
                // 如果root为空,则直接让root指向node
                root = node;
            } else {
                root.add(node);
            }
        }

        // 中序遍历
        public void infixOrder() {
            if (root != null) {
                root.infixOrder();
            } else {
                System.out.println("二叉排序树为空~~~");
            }
        }

        // 查找要删除的节点
        public Node search(int value) {
            if (root == null) {
                return null;
            } else {
                return root.search(value);
            }
        }

        // 查找父节点
        public Node searchParent(int value) {
            if (root == null) {
                return null;
            } else {
                return root.searchParent(value);
            }
        }

        /**
         * 删除node为根节点的二叉排序树的最小节点
         *
         * @param node 传入的节点,作为二叉排序树的根节点
         * @return 返回以node为根节点的二叉排序树的最小节点的值
         */
        public int delRightTreeMin(Node node) {
            Node target = node;
            // 循环的查找左子节点,就会找到最小值
            while (target.left != null) {
                target = target.left;
            }
            // 这时target就指向了最小节点
            // 删除最小节点
            delNode(target.value);
            // 返回最小节点
            return target.value;
        }

        public void delNode(int value) {
            if (root == null) {
                return;
            } else {
                // 1.需要先找到待删除的节点
                Node targetNode = search(value);
                // 如果没有找到待删除的节点
                if (targetNode == null) {
                    return;
                }
                // 如果当前这个二叉排序树只有一个节点
                if (root.left == null && root.right == null) {
                    root = null;
                    return;
                }
                // 找到targetNode的父节点
                Node parent = searchParent(value);
                // 如果待删除节点是叶子节点
                if (targetNode.left == null && targetNode.right == null) {
                    // 判断target是父节点的左子节点,还是右子节点
                    if (parent.left != null && parent.left.value == value) {
                        // 左子节点
                        parent.left = null;
                    } else if (parent.right != null && parent.right.value == value) {
                        // 右子节点
                        parent.right = null;
                    }
                } else if (targetNode.left != null && targetNode.right != null) {
                    // 删除有两颗子树的节点
                    int minVal = delRightTreeMin(targetNode.right);
                    targetNode.value = minVal;
                } else {
                    // 删除只有一颗子树的节点
                    // 如果待删除的节点有左子节点
                    if (targetNode.left != null) {
                        if (parent != null) {
                            // 如果targetNode是parent的左子节点
                            if (parent.left.value == value) {
                                parent.left = targetNode.left;
                            } else {
                                // target是parent的右子节点
                                parent.right = targetNode.left;
                            }
                        } else {
                            // 如果待删除节点没有父节点,说明待删除节点是根节点
                            // 则让待删除节点的子节点作为根节点
                            root = targetNode.left;
                        }
                    } else {
                        // 如果要删除的节点有右子节点
                        if (parent != null) {
                            // 如果targetNode是parent的左子节点
                            if (parent.left.value == value) {
                                parent.left = targetNode.right;
                            } else {
                                // 如果targetNode是parent的右子节点
                                parent.right = targetNode.right;
                            }
                        } else {
                            root = targetNode.right;
                        }
                    }
                }
            }
        }
    }

}

  • 结果打印
中序遍历
Node{value=6}
Node{value=7}
Node{value=8}
Node{value=9}
Node{value=10}
Node{value=11}
树的高度 = 3
左子树高度 = 2
右子树高度 = 2
当前根节点 = Node{value=8}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
平衡二叉树是一种特殊的二叉搜索树,它的左右子树的高度差不超过1,这样可以保证平衡二叉树的查找、插入和删除操作的时间复杂度都是O(log n)。 平衡二叉树有很多种,其中比较常见的有AVL树、红黑树、B树等。在本文中,我们主要介绍AVL树AVL树是一种严格平衡的二叉搜索树,它的每个节点的左右子树高度差不超过1。当节点的高度差超过1时,就需要通过旋转操作来重新平衡。AVL树的特点是:对于一个节点,其左右子树的高度差不超过1,且左右子树都是AVL树。 插入操作 插入操作是AVL树中比较复杂的操作,因为插入一个节点可能导致整个树失去平衡。下面是AVL树的插入操作: 1. 在AVL树中插入一个节点,首先按照二叉搜索树的规则找到插入的位置。 2. 如果插入节点后,其父节点的左右子树高度差不超过1,则不需要进行旋转操作,直接返回。 3. 如果插入节点后,其父节点的左右子树高度差超过1,则需要进行旋转操作。 4. 如果插入节点在父节点的左子树中,并且插入节点的左子树高度大于插入节点的右子树高度,则进行右旋操作;如果插入节点在父节点的右子树中,并且插入节点的右子树高度大于插入节点的左子树高度,则进行左旋操作。 5. 如果插入节点在父节点的左子树中,并且插入节点的左子树高度小于插入节点的右子树高度,则进行左右旋转操作;如果插入节点在父节点的右子树中,并且插入节点的右子树高度小于插入节点的左子树高度,则进行右左旋转操作。 删除操作 删除操作也是AVL树中比较复杂的操作,因为删除一个节点可能导致整个树失去平衡。下面是AVL树的删除操作: 1. 在AVL树中删除一个节点,首先按照二叉搜索树的规则找到要删除的节点。 2. 如果要删除的节点没有子节点,则直接删除即可。 3. 如果要删除的节点只有一个子节点,则将子节点替换成要删除的节点。 4. 如果要删除的节点有两个子节点,则先找到要删除节点的后继节点(即右子树中最小的节点),将后继节点的值赋给要删除的节点,然后将后继节点删除。 5. 删除一个节点可能会导致整个树失去平衡,因此需要进行旋转操作。 6. 如果删除节点后,其父节点的左右子树高度差不超过1,则不需要进行旋转操作,直接返回。 7. 如果删除节点后,其父节点的左右子树高度差超过1,则需要进行旋转操作。 8. 如果删除节点在父节点的左子树中,并且删除节点的左子树高度大于删除节点的右子树高度,则进行右旋操作;如果删除节点在父节点的右子树中,并且删除节点的右子树高度大于删除节点的左子树高度,则进行左旋操作。 9. 如果删除节点在父节点的左子树中,并且删除节点的左子树高度小于删除节点的右子树高度,则进行左右旋转操作;如果删除节点在父节点的右子树中,并且删除节点的右子树高度小于删除节点的左子树高度,则进行右左旋转操作。 总结 AVL树是一种严格平衡的二叉搜索树,它的每个节点的左右子树高度差不超过1。插入和删除操作可能会导致整个树失去平衡,需要通过旋转操作来重新平衡。AVL树比较适合用于读取操作比较频繁的场景,因为它的查找、插入和删除操作的时间复杂度都是O(log n)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值