Problem G: TomCat的环
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 94 Solved: 19
[Submit][Status][Web Board]
Description
TomCat有一个环(如图)有N个单元,并且有4中颜色。他希望把环的每一个单元格都染上颜色,但是相邻的两个单元格颜色不能相同。他想知道一共有几种染色方法
Input
输入单元格数N,N<=100000。
Output
输出染色总数对1000000007取余的结果。
Sample Input
1
2
Sample Output
4
12
题目大意:
经典的着色问题
思路:
背公式,背不出厉害的也可以自己推!公式推导过程:https://blog.csdn.net/zcj5027/article/details/50561465
公式:(m-1)^n+(m-1)*(-1)^n,(m>=2,n>=2) m为不同颜色的种类,n为区域数。
可以看出公式中要计算3的n次幂,是个很大的数,又看到输出结果为取余后的数,所以自然而然想到快速幂取模
快速幂取模详解:https://blog.csdn.net/dbc_121/article/details/77646508
相关代码:
ll quick(ll a, ll b, ll c)//快速幂取模 (a*b)%c=(a%c*b%c)%c;
{
ll sum = 1;
a = a%c;
while (b)
{
if (b & 1)//如果是奇数多取余一次
sum = (sum*a) % c;
b /= 2;
a = (a*a) % c;
}
return sum;
AC代码:
#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<set>
#include<cmath>
typedef long long ll;
using namespace std;
typedef long long ll;
using namespace std;
ll quick(ll a, ll b, ll c)//快速幂取模 (a*b)%c=(a%c*b%c)%c;
{
ll sum = 1;
a = a%c;
while (b)
{
if (b & 1)
sum = (sum*a) % c;
b /= 2;
a = (a*a) % c;
}
return sum;
}
int main()
{
ll n, c = 1000000007, a;
while (scanf("%lld", &n) != EOF)
{
if (n == 1)
{
printf("4\n");
continue;
}
if (n & 1)
a = (quick(3, n, c) + c - 3) % c;
else
a = (quick(3, n, c) + 3) % c;
printf("%d\n", a);
}
return 0;
}