zcmu 暑假训练赛5 G(染色的环)(数学公式+快速幂取模)

Problem G: TomCat的环

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 94  Solved: 19
[Submit][Status][Web Board]

Description

TomCat有一个环(如图)有N个单元,并且有4中颜色。他希望把环的每一个单元格都染上颜色,但是相邻的两个单元格颜色不能相同。他想知道一共有几种染色方法

 

 

 

Input

输入单元格数N,N<=100000。

Output

输出染色总数对1000000007取余的结果。

 

Sample Input

1

2

Sample Output

4

12

题目大意:

     经典的着色问题

思路:

      背公式,背不出厉害的也可以自己推!公式推导过程:https://blog.csdn.net/zcj5027/article/details/50561465

       公式:(m-1)^n+(m-1)*(-1)^n,(m>=2,n>=2)    m为不同颜色的种类,n为区域数。

   可以看出公式中要计算3的n次幂,是个很大的数,又看到输出结果为取余后的数,所以自然而然想到快速幂取模

     快速幂取模详解:https://blog.csdn.net/dbc_121/article/details/77646508

相关代码:

ll quick(ll a, ll b, ll c)//快速幂取模 (a*b)%c=(a%c*b%c)%c;
{
	ll sum = 1;
	a = a%c;
	while (b)
	{
		if (b & 1)//如果是奇数多取余一次
			sum = (sum*a) % c;
		b /= 2;
		a = (a*a) % c;
	}
	return sum;

AC代码:

#include<iostream>
#include<cstdio>
#include<string>
#include<cstring>
#include<algorithm>
#include<set>
#include<cmath>
typedef long long ll;
using namespace std;
typedef long long ll;
using namespace std;
ll quick(ll a, ll b, ll c)//快速幂取模 (a*b)%c=(a%c*b%c)%c;
{
	ll sum = 1;
	a = a%c;
	while (b)
	{
		if (b & 1)
			sum = (sum*a) % c;
		b /= 2;
		a = (a*a) % c;
	}
	return sum;

}

int main()
{
	ll n, c = 1000000007, a;
	while (scanf("%lld", &n) != EOF)
	{

		if (n == 1)
		{

			printf("4\n");
			continue;
		}
		if (n & 1)
			a = (quick(3, n, c) + c - 3) % c;
		else
			a = (quick(3, n, c) + 3) % c;

		printf("%d\n", a);

	}

	return 0;
}

​

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值