一、介绍
1、为什么需要索引?
索引的出现是为了提高数据查询的效率
二、索引的常见模型
1、哈希表
- 哈希表是一种以键-值(key-value)存储数据的结构,只要输入待查找的值即key,就可以找到其对应的值即 Value。
- 哈希的思路:把值放在数组里,用一个哈希函数把key换算成一个确定的位置,然后把value放在数组的这个位置
- 哈希表增加数据是通过一种哈希运行,先算出位置,然后在数组中添加。所以增加数据快,因为不是有序的所以哈希索引做区间查询的速度是很慢的。
- 哈希表结构: 适用于有等值查询的场景
2、有序数组
- 在等值查询和范围查询场景中的性能就都非常优秀
- 数组就是按照递增的顺序保存的。查询用二分法就可以快速得到,时间复杂度是 O(log(N))。
- 往中间插入一个记录就必须得挪动后面所有的记录,成本太高。
- 有序数组索引适用于静态存储引擎
3、搜索树
- 二叉搜索树的特点是:每个节点的左儿子小于父节点,父节点又小于右儿子。时间复杂度O(log(N))
- 树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左
到右递增。
- 二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。原因是,索引不止存在内存中,还要写到磁盘上。
- 为什么不用二叉树:一棵 100 万节点的平衡二叉树,树高 20。一次查询可能需要访问 20 个数 据块。在机械硬盘时代,从磁盘随机读一个数据块需要 10 ms 左右的寻址时间。对于一个 100 万行的表,如果使用二叉树来存储,单独访问一个行可能需要 20 个 10 ms 的时间,这个查询太慢。
- 为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块。就不应该使用二叉树,而是要使用“N 叉”树。这里,“N 叉”树中的“N”取决于数据块的 大小。
- N叉树由于在读写上的性能优点,以及适配磁盘的访问模式,已经被广泛应用在数据库引擎中。
三、InnoDB 的索引模型
1、以 InnoDB 的一个整数字段索引为例,这个N差不多是1200。这棵树高是4的时候,可以存1200的3 次方个值差不多17亿。考虑到树根的数据块总是在内存中的,一个10亿行的表上一个整数字段的索引,查找一个值最多只需要访问3次磁盘。
2、索引组织表 在InnoDB中,表都是根据主键顺序以索引的形式存放的。
3、InnoDB使用B+树索引模型
4、索引类型分为主键索引和非主键索引
- 主键索引的叶子节点存的是整行数据。在InnoDB里主键索引也被称为聚簇索引 (clustered index)。
- 非主键索引的叶子节点内容是主键的值。在InnoDB里非主键索引也被称为二级索引 (secondary index)。
5、主键索引和普通索引的查询的区别
- 主键查询方式==> 只需搜索ID 这颗B+树
- 普通索引先搜索索引树,得到ID 的值,再到ID 索引搜索一次 => 回表
- 基于非主键索引的查询需要多扫描一棵索引树。在应用中应该尽量使用主键查询。
- 如果设计到分库分表就需要考虑唯一id 可以使用雪花算法生成一个唯一id
- 普通的uuid 在底层查找也是将字符转化为ASCII然后再去比较
6、自增主键优缺点
- 主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。
- 自增主键的插入数据模式,符合递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂。
- 从性能和存储空间方面考量,自增主键往往是更合理的选择
索引的分裂与合并
1、所在的数据页已经满了,根据B+树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去=> 页分裂。
页分裂操作影响数据页的利用率
2、数据删除,利用率降低,将数据页合并