Farmer John has purchased a lush new rectangular pasture composed of M byN (1 ≤M ≤ 12; 1 ≤ N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.
Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John determine the number of ways he can choose the squares to plant.
InputLines 2.. M+1: Line i+1 describes row i of the pasture with N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)
2 3 1 1 1 0 1 0Sample Output
9Hint
1 2 3 4
There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
const int mod = 1e8;
const int MAX = 1 << 13;
int vis[MAX],maps[MAX],dp[13][MAX];//maps存的是实际的图,vis存的是可行图
bool judge_place(int x)
{
return x & (x<<1);//判断是否有左右相邻的 1 ,有相邻1返回1 ,没有返回0
}
bool judge_line(int i, int j)
{
return maps[i] & vis[j];/*实际图和可行图是否有重合的1,就是说实际图不能放东西,
但是可行图这个位置有东西。返回1说明有重合1.也就是不符合要求。 */
}
int main()
{
int n,m;
while(~scanf("%d%d",&n,&m))
{
for(int i = 1; i <= n; i++)
for(int j = 1,x; j <= m; j++){
scanf("%d",&x);
if(x == 0) maps[i] += (1 << (j-1));//如果实际图是0代表不能放东西,为了方便比较与代码实现,将1表示为不能放东西
}
int count = 0;
int ans = 0;
for(int i = 0; i < (1<<m); i++)
if(!judge_place(i))//注意取! 0代表状态可行
vis[count++] = i;//可行的行的状态
for(int i = 0; i < count; i++)
if(!judge_line(1,i))//注意取! 0代表状态可行
dp[1][i] = 1;// 初始化第一行的状态
for(int i = 2; i <= n; i++)
{
for(int j = 0; j < count; j++)
if(!judge_line(i,j))//判断状态是否可行
for(int k = 0; k < count; k++){
if(!(vis[j] & vis[k]))//判断上下相邻的状态
dp[i][j] += dp[i-1][k];// 如果没有上下相邻,下一行加上
}
}
for(int i = 0; i < count; i++)
ans = (ans + dp[n][i]) % mod;
printf("%d\n",ans);
}
}