笔记(杂)
文章平均质量分 95
一些比较杂的笔记
maplezys
我很懒,不想添加简介。
展开
-
图卷积(7)——过平滑现象(2)
图卷积(7)——过平滑现象(2)空间域图卷积局限性分析:上一份博客中提到的那篇论文,提出了三个观点。论文中也将其总结一下。GCNs优势: 图卷积(拉普拉斯平滑)使分类问题更容易 多层神经网络具备强大的特征提取功能GCNs劣势: 多次拉普拉斯平滑使输出特征过度平滑 浅层神经网络的感受野、特征提取能力有限解决方案: 基于随机游走的协同训练(Co-Training) 自训练(Self-Training)基于随机游走的协同训练定义吸收概率矩阵P=(L+αΛ)−1P原创 2020-11-20 20:45:41 · 1808 阅读 · 1 评论 -
金字塔LK光流法
金字塔LK光流法最近看的一篇论文中有金字塔LK光流法,于是看了些东西,整理一下。光流法光流(optical flow)是空间运动物体在观察成像平面上的像素运动的瞬时速度。光流法是利用图像序列中像素在时间域上的变化以及相邻帧之间的相关性来找到上一帧跟当前帧之间存在的对应关系,从而计算出相邻帧之间物体的运动信息的一种方法。通常将二维图像平面特定坐标点上的灰度瞬时变化率定义为光流矢量。光流计算基于物体的运动的光学特性,提出了两个假设:运动物体的灰度值在很短的时间间隔内保持不变;给定邻域内的速度向量变原创 2020-11-13 11:42:12 · 2157 阅读 · 5 评论 -
图卷积(6)——过平滑现象(1)
图卷积(6)——过平滑现象(1)过平滑现象的提出是在论文Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning中。作者将GCN用于半监督学习任务,发现采用多层GCN之后,会出现过平滑现象(over-smoothing)。文章提出三个核心观点:拉普拉斯平滑:GCN中图卷积是特殊形式的拉普拉斯平滑,可以聚合临近节点的特征,使同一类别的节点的特征相似;过平滑问题:多层GCN使得节点输出特征过度平滑,这样原创 2020-11-07 13:42:15 · 5636 阅读 · 2 评论 -
图卷积(5)——空域图卷积
图卷积(5)——空域图卷积(1)原创 2020-11-02 16:48:18 · 2995 阅读 · 0 评论 -
图卷积(4)——谱域图卷积(3)
图卷积(4)——谱域图卷积(3)介绍三种谱域图卷积网络——SCNN、ChebNet和GCN。三者均是以下式子的特例:x⋆Ggθ=UgθUTx=U(g^(λ1)⋱g^(λn))(x^(λ1)x^(λ2)⋮x^(λn))x \star_{G} g_{\theta}=U g_{\theta} U^{T} x=U\left(\begin{array}{ccc}\hat{g}\left(\lambda_{1}\right) & & \\& \ddots & \\&原创 2020-10-29 21:17:36 · 944 阅读 · 0 评论 -
图卷积(3)——谱域图卷积(2)
图卷积(3)——谱域图卷积(2)图傅里叶变换将图中的nnn个节点表示为x=[x1,x2,⋯ ,xn]T∈Rnx=\left[x_{1}, x_{2}, \cdots, x_{n}\right]^{T} \in \mathbb{R}^{n}x=[x1,x2,⋯,xn]T∈Rn,每一个节点上有一个信号值,类似于图像的像素,所以x(i)=xix(i)=x_{i}x(i)=xi,每个节点也可以是个向量。在傅里叶变换中,不同频率的余弦函数可以当做基函数。经典傅里叶变换的本质是求一个线性组合的系数,傅里叶原创 2020-10-29 13:33:06 · 475 阅读 · 0 评论 -
图卷积(2)——谱域图卷积(1)
图卷积(2)——谱域图卷积(1)卷积F[f1(t)⋆f2(t)]=F1(w)⋅F2(w)f1(t)⋆f2(t)=F−1[F1(w)⋅F2(w)]\begin{aligned}\mathcal{F}\left[f_{1}(t) \star f_{2}(t)\right]&=F_{1}(w) \cdot F_{2}(w) \\f_{1}(t) \star f_{2}(t)&=\mathcal{F}^{-1}\left[F_{1}(w) \cdot F_{2}(w)\right]\en原创 2020-10-28 13:29:08 · 880 阅读 · 0 评论 -
图卷积(1)——从欧式空间到非欧式空间
图卷积(1)普通卷积神经网络多维欧式空间局部空间响应卷积参数共享活性卷积一般卷积神经网络处理的数据都是规则排序,输入维度固定的,比如语音序列、图像像素或者视频帧,每一次卷积都是对每个处在规则空间内的数据进行聚合,并且聚合时的参数(卷积核)是一样的。当处于欧式空间内的数据发生了一些偏移,则可以采用活性卷积。 双线性插值法 采用双线性插值法,在离散坐标下,通过插值方法计算得到连续位置的像素值。$$和$\beta$是可学习参数。但学原创 2020-10-27 20:15:58 · 3607 阅读 · 0 评论 -
opencv的VideoWriter函数以及ffmpy3
VideoWriter()VideoWriter函数是opencv中用来生成视频的函数,其中的参数,filename是生成视频的路径,fourcc是编码器(可真是个磨人的小妖精),fps即为fps,frameSize为窗口大小。用法并不是很难:import cv2 fps = 30 fourcc = cv2.VideoWriter_fourcc('M', 'J', 'P', 'G')...原创 2020-04-01 21:18:46 · 1099 阅读 · 0 评论 -
ATOM算法整理以及代码运行等
ATOM算法整理以及代码运行等原创 2020-10-27 19:39:10 · 3156 阅读 · 0 评论