最大子数组求解问题

 

#include <iostream>
#include<algorithm>
using namespace std;

class BiggestArray{
public:
    //蛮力枚举法,时间复杂度O(n3),空间复杂度O(1)
    int FindTheBiggestMethod1(int*a,int n)
    {
        int maxSum=INT_MIN;
        for(int i=0;i<n;i++)
        {
            for(int j=i;j<n;j++)
            {
                int sum=0;
                for(int k=i;k<=j;k++)
                {
                    sum+=a[k];
                }
                if(maxSum<sum) maxSum=sum;
            }
        }
        return maxSum;
    }
    //优化枚举法,时间复杂度O(n2),空间复杂度O(n2)
    int FindTheBiggestMethod2(int*a,int n)
    {
        int auxiliaryMetrix[n][n];
        int maxSum=INT_MIN;
        for(int i=0;i<n;i++)
        {
            for(int j=i;j<n;j++)
            {
                if(i==j) auxiliaryMetrix[i][j]=a[i];
                else auxiliaryMetrix[i][j]=auxiliaryMetrix[i][j-1]+a[j];
                if(maxSum<auxiliaryMetrix[i][j]) maxSum=auxiliaryMetrix[i][j];
            }
        }
        return maxSum;
    }
    //优化枚举法2,时间富足度O(n2),空间复杂度O(1)
    int FindTheBiggestMethod3(int*a,int n)
    {
        int lastSum;
        int maxSum=INT_MIN;
        for(int i=0;i<n;i++)
        {
            for(int j=i;j<n;j++)
            {
                if(i==j)lastSum=a[i];
                else lastSum+=a[j];
                if(maxSum<lastSum) maxSum=lastSum;
            }
        }
        return maxSum;
    }
    //分而治之,时间复杂度O(n*Log n)
    int FindTheBiggestMethod4(int*a,int low,int high)
    {
        if(low==high) return a[low];
        int mid=(low+high)/2;
        int s1,s2,s3;
        s1=FindTheBiggestMethod4(a,low,mid);
        s2=FindTheBiggestMethod4(a,mid+1,high);
        s3=CrossingSubArray(a,low,mid,high);
        return max(max(s1,s2),max(s2,s3));
    }
private:
    int CrossingSubArray(int *x,int low,int mid,int high)
    {
        int SumLeft=INT_MIN,SumRight=INT_MIN;
        int sum=0;
        for(int i=mid;i>=low;i--)
        {
            sum+=x[i];
            if(sum>SumLeft) SumLeft=sum;
        }
        sum=0;
        for(int i=mid+1;i<=high;i++)
        {
            sum+=x[i];
            if(sum>SumRight) SumRight=sum;
        }
        return SumRight+SumLeft;
    }
};
void answer(int*a,int len,int choose)
{
    BiggestArray ba;
    if(choose==1)
    cout<<ba.FindTheBiggestMethod1(a,len)<<endl;
    if(choose==2)
    cout<<ba.FindTheBiggestMethod2(a,len)<<endl;
    if(choose==3)
        cout<<ba.FindTheBiggestMethod3(a,len)<<endl;
        if(choose==4)
            cout<<ba.FindTheBiggestMethod4(a,0,len-1)<<endl;
}
int main()
{
    int a[]={-1,-3,3,5,-4,3,2,-2,3,6};
    int b[]={1,-2,4,5,-2,8,3,-2,6,3,7,-1};
    int lenA=sizeof(a)/sizeof(a[0]);
    int lenB=sizeof(b)/sizeof(b[0]);

    cout<<"方法一:"<<endl;
    cout<<"数组A的最大组数组是";
    answer(a,lenA,1);
    cout<<"数组B的最大子数组是";
    answer(b,lenB,1);
//
    cout<<endl<<endl;

    cout<<"方法二:"<<endl;
    cout<<"数组A的最大组数组是";
    answer(a,lenA,2);
    cout<<"数组B的最大子数组是";
    answer(b,lenB,2);

    cout<<endl<<endl;

    cout<<"方法三:"<<endl;
    cout<<"数组A的最大组数组是";
    answer(a,lenA,3);
    cout<<"数组B的最大子数组是";
    answer(b,lenB,3);

    cout<<endl<<endl;

    cout<<"方法四:"<<endl;
    cout<<"数组A的最大组数组是";
    answer(a,lenA,4);
    cout<<"数组B的最大子数组是";
    answer(b,lenB,4);
    
    cout<<endl<<endl;
    
    cout<<"方法五:动态规划(最优解法)待续"<<endl;

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>