《机器学习实战》个人学习记录笔记(六)———Sklearn决策树预测隐形眼镜类型

这篇博客记录了使用Sklearn的DecisionTreeClassifier构建决策树的过程,详细介绍了criterion、splitter、max_depth等参数,并展示了如何通过Graphviz可视化决策树。作者通过学习《机器学习实战》和相关资源进行了学习实践。
摘要由CSDN通过智能技术生成

第三章 决策树

PS:个人笔记 根据《机器学习实战》这本书,Jack-Cui的博客,以及深度眸的视频进行学习

1 使用Sklearn构建决策树

使用的是DecisionTreeClassifierexport_graphviz,前者用于决策树构建,后者用于决策树可视化。


2 DecisionTreeClassifier构建决策树

criterion:特征选择标准,可选参数,默认是gini,可以设置为entropy。gini是基尼不纯度,是将来自集合的某种结果随机应用于某一数据项的预期误差率,是一种基于统计的思想。entropy是香农熵,也就是上篇文章讲过的内容,是一种基于信息论的思想。Sklearn把gini设为默认参数,应该也是做了相应的斟酌的,精度也许更高些?ID3算法使用的是entropy,CART算法使用的则是gini。

splitter:特征划分点选择标准,可选参数࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值