leecode 75-2 python 字符串的最大公因子

本人新手一枚,希望大佬们及时指导我的错误,万分感谢。

题目地址

LeetCode 75 - 学习计划 - 力扣(LeetCode)全球极客挚爱的技术成长平台

对于字符串 s 和 t,只有在 s = t + t + t + ... + t + tt 自身连接 1 次或多次)时,我们才认定 “t 能除尽 s”。

给定两个字符串 str1 和 str2 。返回 最长字符串 x,要求满足 x 能除尽 str1 且 x 能除尽 str2 。

示例 1:

输入:str1 = "ABCABC", str2 = "ABC"
输出:"ABC"

示例 2:

输入:str1 = "ABABAB", str2 = "ABAB"
输出:"AB"

示例 3:

输入:str1 = "LEET", str2 = "CODE"
输出:""

【1】暴力求解涌上心头,将短的那个字符串拿出来(我设为d),从长到短遍历这个d,比如d为abc,那么我们会判断abc->ab->a,哪个是最大公因子。为啥我从长到短遍历呢,因为题目问的返回最长字符串,要是问最短,那就从小到大遍历,你细品~

step1:找到那个比较短的字符串长度。

step2:从大到小遍历这个短字符串(其实在这里,遍历长的也行,如果它们真是有最大公因子,那么短的那个一定是长的那个的前缀)

step3:判断当前的字符串长度是否能被两个字符串长度整除同时还要满足str1=n个最大公因子,str2=m个最大公因子

代码:

class Solution:
    def gcdOfStrings(self, str1: str, str2: str) -> str:
        #step1
        l1, l2 = len(str1), len(str2)
        lmin = min(l1, l2)
        #step2
        for i in range(lmin,0,-1):
            #step3
            if (l1%i)==0 and (l2%i)==0 and str1[:i]*(l1//i)==str1 and str1[:i]*(l2//i)==str2:
                return str1[:i]
        return ''

【2】看了官方的暴力算法,和我写的差不多,但是看了暴力算法的优化,我人麻了。又是一个不会的函数:

math.gcd(int1, int2)

这个函数是求最大公约数的,这时就想到了最小公倍数。最小公倍数当然可以通过最大公约数求解,math库也包含了相对应的方法:

#通过gcd求解
(x*y)/math.gcd(x, y)
#通过math库自带函数求解
math.lcm(x, y)

不得不说,得把math库里的基本运算方法得瞅瞅。看了一个手撸gcd的代码:

def gcd(a, b):
    while b:
        tmp = a
        a = b
        b = tmp % b
    return a

言归正传,开始步骤:

step1:找到两个数组长度最大公约数。

step2:看看这个最大公约数是不是可以满足str1=n个最大公因子,str2=m个最大公因子。(相比上一个方法,这个不用遍历了,时间复杂度下降)

代码:

class Solution:
    def gcdOfStrings(self, str1: str, str2: str) -> str:
        #step1
        l1, l2 = len(str1), len(str2)
        l_gcd = math.gcd(l1,l2)
        #step2
        if str1[:l_gcd]*(l1//l_gcd)==str1 and str1[:l_gcd]*(l2//l_gcd)==str2:
            return str1[:l_gcd]
        else:
            return ''

【3】数学方法

官方给了这样一个数学结论,str1+str2 = str2+str1,那么就存在最大公约数,所以这个只需要一步到位:

代码:

class Solution:
    def gcdOfStrings(self, str1: str, str2: str) -> str:
        if str1+str2 == str2+str1:
            return str1[:math.gcd(len(str1),len(str2))]
        return ''

介个是真神奇!!!我记住它了!

欢迎大家批评指正。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值