回文数猜想(函数专题)
题目描述
一个正整数,如果从左向右读(称之为正序数)和从右向左读(称之为倒序数)是一样的,这样的数就叫回文数。任取一个正整数,如果不是回文数,将该数与他的倒序数相加,若其和不是回文数,则重复上述步骤,一直到获得回文数为止。例如:68变成154(68+86),再变成605(154+451),最后变成1111(605+506),而1111是回文数。于是有数学家提出一个猜想:不论开始是什么正整数,在经过有限次正序数和倒序数相加的步骤后,都会得到一个回文数。至今为止还不知道这个猜想是对还是错。现在请你编程序验证之。你已经会写求一个整数的逆序数的函数和判断回文数的函数,请你再写一个递归函数,实现转换。
void conv(int n)
{
输出n;
如果n是回文数,return;
求n的逆序数m;
递归调用自身conv(m+n);
}
输入
输入一个正整数。特别说明:输入的数据保证中间结果小于2^31。
输出
输出占一行,变换的过程中得到的数值,两个数之间用空格隔开。
样例输入
27228
样例输出
27228 109500 115401 219912
代码:
#include<stdio.h>
void conv(long long int n,int *l) //*l用来判断是否是第一个数,最后一个数后面无空格
{
if(*l==0)
printf("%lld",n);
else printf(" %lld",n);
l++;
long long int a[100],b,c,m,f=0,n1,d,i=0,j;
n1=n;
while(n1>0) //求n的每位数
{
m=n1%10;
n1=n1/10;
a[i]=m; //存入a数组
i++;
}
d=0;
for(j=0;j<i;j++) //循环判断对称的数是否相等
{
if(a[j]==a[i-1-j])
d++; //如果相等d加1
}
if(d==i) //d==i代表是回文数
f=1;
if(f==0) //f==0代表n不是回文数
{
b=0;
for(j=0;j<i;j++) //求n的逆序数
{
b=b*10+a[j];
}
c=b+n; //n与n的逆序数求和
conv(c,&l); //递归
}
}
int main()
{
long long int n;
int l=0;
scanf("%lld",&n);
conv(n,&l);
return 0;
}
void conv(long long int n,int *l) //*l用来判断是否是第一个数,最后一个数后面无空格
{
if(*l==0)
printf("%lld",n);
else printf(" %lld",n);
l++;
long long int a[100],b,c,m,f=0,n1,d,i=0,j;
n1=n;
while(n1>0) //求n的每位数
{
m=n1%10;
n1=n1/10;
a[i]=m; //存入a数组
i++;
}
d=0;
for(j=0;j<i;j++) //循环判断对称的数是否相等
{
if(a[j]==a[i-1-j])
d++; //如果相等d加1
}
if(d==i) //d==i代表是回文数
f=1;
if(f==0) //f==0代表n不是回文数
{
b=0;
for(j=0;j<i;j++) //求n的逆序数
{
b=b*10+a[j];
}
c=b+n; //n与n的逆序数求和
conv(c,&l); //递归
}
}
int main()
{
long long int n;
int l=0;
scanf("%lld",&n);
conv(n,&l);
return 0;
}