Spark入门介绍(以wordcount为例)

什么是Spark?

Spark是一个开源框架,是基于内存计算的大数据并行计算框架。

Spark架构

并行化是将工作负载分在不同线程或不同节点上执行的子任务,Spark的工作负载划分有RDD分区决定。
RDD:是弹性分布式数据集。
在这里插入图片描述

Spark工作原理

Master是由四大部分组成(RDD Graph,Scheduler,Block Tracker以及Shuffle Tracker)
在这里插入图片描述
编写程序提交到Master上,

启动RDD Graph就是DAG,它会提交给Task Scheduler任务调度器等待调度执行

具体执行时,Task Scheduler会把任务提交到Worker节点上
Block Tracker用于记录计算数据在Worker节点上的块信息

Shuffle Blocker用于记录RDD在计算过程中遇到Shuffle过程时会进行物化,Shuffle Tracker用于记录这些物化的RDD的存放信息

RDD Graph

在这里插入图片描述
RDD Graph即DAG:
每个RDD由四个分区组成,每个分区分配一个任务执行,
绿色框表示实施RDD操作后的数据集。

Stage

由于shuffle依赖必须等RDD的parent RDD partition数据全部ready之后才能开始计算,因此spark的设计是让parent RDD将结果写在本地,完全写完之后,通知后面的RDD。后面的RDD则首先去读之前的本地数据作为input,然后进行运算。

由于上述特性,将shuffle依赖就必须分为两个阶段(stage)去做:

第一个阶段(stage)需要把结果shuffle到本地,例如reduceByKey,首先要聚合某个key的所有记录,才能进行下一步的reduce计算,这个汇聚的过程就是shuffle

第二个阶段(stage)则读入数据进行处理。

同一个stage里面的task是可以并发执行的,下一个stage要等前一个stage ready

(和mapreduce的reduce需要等map过程ready 一脉相承)

(为什么要写在本地:后面的RDD多个partition都要去读这个信息,如果放到内存,如果出现数据丢失,后面的所有步骤全部不能进行,违背了之前所说的需要parent RDD partition数据全部ready的原则。为什么要保证parent RDD要ready,如下例,如果有一个partition未生成或者在内存中丢失,那么直接导致计算结果是完全错误的:

在这里插入图片描述
写到文件中更加可靠。Shuffle会生成大量临时文件,以免错误时重新计算,其使用的本地磁盘目录由spark.local.dir指定,缓存到磁盘的RDD数据。最好将这个属性设定为访问速度快的本地磁盘。可以配置多个路径到多个磁盘,增加IO带宽

在Spark 1.0 以后,SPARK_LOCAL_DIRS(Standalone, Mesos) or LOCAL_DIRS (YARN)参数会覆盖这个配置。比如Spark On YARN的时候,Spark Executor的本地路径依赖于Yarn的配置,而不取决于这个参数。)

对于transformation操作,以shuffle依赖为分隔,分为不同的Stages。

窄依赖------>tasks会归并在同一个stage中,(相同节点上的task运算可以像pipeline一样顺序执行,不同节点并行计算,互不影响)

shuffle依赖------>前后拆分为两个stage,前一个stage写完文件后下一个stage才能开始

action操作------>和其他tasks会归并在同一个stage(在没有shuffle依赖的情况下,生成默认的stage,保证至少一个stage)

宽窄依赖

RDD依赖关系,也就是有依赖的RDD之间的关系,比如RDD1------->RDD2(RDD1生成RDD2),RDD2依赖于RDD1。这里的生成也就是RDDtransformation操作

窄依赖(也叫narrow依赖)

从父RDD角度看:一个父RDD只被一个子RDD分区使用。父RDD的每个分区最多只能被一个Child RDD的一个分区使用

从子RDD角度看:依赖上级RDD的部分分区 精确知道依赖的上级RDD分区,会选择和自己在同一节点的上级RDD分区,没有网络IO开销,高效。如map,flatmap,filter

宽依赖(也叫shuffle依赖/wide依赖)

从父RDD角度看:一个父RDD被多个子RDD分区使用。父RDD的每个分区可以被多个Child RDD分区依赖

从子RDD角度看:依赖上级RDD的所有分区 无法精确定位依赖的上级RDD分区,相当于依赖所有分区(例如reduceByKey) 计算就涉及到节点间网络传输

在这里插入图片描述
Spark之所以将依赖分为narrow和 shuffle:

(1) narrow dependencies可以支持在同一个集群Executor上,以pipeline管道形式顺序执行多条命令,例如在执行了map后,紧接着执行filter。分区内的计算收敛,不需要依赖所有分区的数据,可以并行地在不同节点进行计算。所以它的失败恢复也更有效,因为它只需要重新计算丢失的parent partition即可,

(2)shuffle dependencies 则需要所有的父分区都是可用的,必须等RDD的parent partition数据全部ready之后才能开始计算,可能还需要调用类似MapReduce之类的操作进行跨节点传递。从失败恢复的角度看,shuffle dependencies 牵涉RDD各级的多个parent partition。

在这里插入图片描述

以wordcount为例

1、新建一个scala project
在这里插入图片描述
2、导入包(主要用以下5个包)
sparksql
sql-mapping-mr
sparkStreaming-及时处理
sparkMLlib-机器学习
sparkGraphx-图计算
3、更改scala版本,右击项目——>configure Build Path——>Edit
在这里插入图片描述
4、新建一个object scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.SparkConf

object wordCount {

def main(args: Array[String]):Unit = {
 // System.setProperty("hadoop.home.dir", "C://Users//Administrator.DESKTOP-T63BNEF//Desktop//all folder//hadoop-2.6.5");
    //spark处理---并发迭代大数据  
    //RDD.map word->(w,1)
    //rdd.reduce->w->sum 1
     //1.sc
    var conf = new SparkConf()
    conf.setMaster("local[*]").setAppName("hello")
    var sc = new SparkContext(conf)
    sc.setLogLevel("WARN");
    //2.sc.textFile ->RDD
    var path = "src/data/123"       // "src/data/123"为需要计算的文本文件
    var filedata_rdd = sc.textFile(path,2)
    var words_rdd=filedata_rdd
    .flatMap(_.split("\\W+"))
    .map(x=>(x,1))
    .reduceByKey(_+_)
    .map(_.swap)
    .sortByKey(false)
//    words_rdd.foreach(println)
    print(filedata_rdd.count())
    words_rdd.foreach{line=>
      println("word="+line._1+" ,num="+line._2)
    }
    println("end....")
  }    
}

测试文本数据:
在这里插入图片描述
运行结果:
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值