DataWhale数据挖掘学习--Task 5 模型融合

怎样赢得机器学习比赛:你拿别人的结果和你自己的结果与做集成。 ---- Vitaly Kuznetsov NIPS2014。

不知不觉来到了最后一个任务,模型融合。模型融合是一种能在各种的机器学习任务上提高准确率的强有力技术,也是比赛后期一个重要的环节。模型融合通常有以下方式:

  1. 简单加权融合:
    (1)回归(分类概率):算术平均融合(Arithmetic mean),几何平均融合(Geometric mean);
    (2)分类:投票(Voting)
    (3) 综合:排序融合(Rank averaging),log融合

  2. stacking/blending:
    (1) 构建多层模型,并利用预测结果再拟合预测。

  3. boosting/bagging(在xgboost,Adaboost,GBDT中已经用到):
    (1) 多树的提升方法

简单来说模型融合就是当用初始训练数据学习出若干个基学习器后,将这几个学习器的预测结果作为新的训练集,来学习一个新的学习器。将个体学习器结合在一起的时候使用的方法叫做结合策略。

5.1 Averaging

对于回归问题,我们可以将分类器输出的结果求平均值。

简单模拟生成数据:

## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 
5.1.1 加权平均

权值可以用排序的方法确定,举个例子,比如A、B、C三种基本模型,模型效果进行排名,假设排名分别是1,2,3,那么给这三个模型赋予的权值分别是3/6、2/6、1/6

## 加权平均函数
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result
 
# 各个模型得分
print('Pred1 MAE:',metrics.mean_absolute_error(y_test_true, test_pre1))
print('Pred2 MAE:',metrics.mean_absolute_error(y_test_true, test_pre2))
print('Pred3 MAE:',metrics.mean_absolute_error(y_test_true, test_pre3))

# 融合后得分
w = [0.3,0.4,0.3] # 定义比重权值
Weighted_pre = Weighted_method(test_pre1,test_pre2,test_pre3,w)
print('Weighted_pre MAE:',metrics.mean_absolute_error(y_test_true, Weighted_pre))
  • from sklearn import metrics

ouput:

Pred1 MAE: 0.175
Pred2 MAE: 0.075
Pred3 MAE: 0.1
Weighted_pre MAE: 0.0575
5.1.2 mean平均
def Mean_method(test_pre1,test_pre2,test_pre3):
    Mean_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).mean(axis=1)
    return Mean_result
    
Mean_pre = Mean_method(test_pre1,test_pre2,test_pre3)
print('Mean_pre MAE:',metrics.mean_absolute_error(y_test_true, Mean_pre))    

ouput:

Mean_pre MAE: 0.0666666666667
5.1.3 median平均
def Median_method(test_pre1,test_pre2,test_pre3):
    Median_result = pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).median(axis=1)
    return Median_result

Median_pre = Median_method(test_pre1,test_pre2,test_pre3)
print('Median_pre MAE:',metrics.mean_absolute_error(y_test_true, Median_pre))

output:

Median_pre MAE: 0.075
5.2 Voting

对于分类问题,我们可以使用投票法来选择输出最多的类。

5.2.1 硬投票

硬投票:对多个模型直接进行投票,不区分模型结果的相对重要度,最终投票数最多的类为最终被预测的类。

iris = datasets.load_iris() # sklearn导入数据,鸢尾花数据

x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.7,
                     colsample_bytree=0.6, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
                              min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1)

# 硬投票
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='hard')
for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
    scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

ouput:

Accuracy: 0.97 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.95 (+/- 0.03) [SVM]
Accuracy: 0.94 (+/- 0.04) [Ensemble]
5.2.2 软投票

软投票:和硬投票原理相同,增加了设置权重的功能,可以为不同模型设置不同权重,进而区别模型不同的重要度。

x=iris.data
y=iris.target
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)

clf1 = XGBClassifier(learning_rate=0.1, n_estimators=150, max_depth=3, min_child_weight=2, subsample=0.8,
                     colsample_bytree=0.8, objective='binary:logistic')
clf2 = RandomForestClassifier(n_estimators=50, max_depth=1, min_samples_split=4,
                              min_samples_leaf=63,oob_score=True)
clf3 = SVC(C=0.1, probability=True)

# 软投票
eclf = VotingClassifier(estimators=[('xgb', clf1), ('rf', clf2), ('svc', clf3)], voting='soft', weights=[2, 1, 1])
clf1.fit(x_train, y_train)

for clf, label in zip([clf1, clf2, clf3, eclf], ['XGBBoosting', 'Random Forest', 'SVM', 'Ensemble']):
    scores = cross_val_score(clf, x, y, cv=5, scoring='accuracy')
    print("Accuracy: %0.2f (+/- %0.2f) [%s]" % (scores.mean(), scores.std(), label))

ouput:

Accuracy: 0.96 (+/- 0.02) [XGBBoosting]
Accuracy: 0.33 (+/- 0.00) [Random Forest]
Accuracy: 0.95 (+/- 0.03) [SVM]
Accuracy: 0.96 (+/- 0.02) [Ensemble]
5.3 Stacking

上面说的投票法和平均法都是很有效的结合策略,还有一种结合策略是使用另外一个机器学习算法来将个体机器学习器的结果结合在一起,这个方法就是Stacking。

概念图:
在这里插入图片描述
在stacking方法中,我们把个体学习器叫做初级学习器,用于结合的学习器叫做次级学习器或元学习器(meta-learner),次级学习器用于训练的数据叫做次级训练集。次级训练集是在训练集上用初级学习器得到的。

5.3.1 Stacking算法

西瓜书上的算法示意图:
在这里插入图片描述

  • 过程1-3 是训练出来个体学习器,也就是初级学习器。
  • 过程5-9是 使用训练出来的个体学习器来得预测的结果,这个预测的结果当做次级学习器的训练集。
  • 过程11 是用初级学习器预测的结果训练出次级学习器,得到我们最后训练的模型。
5.3.2 Stacking概述

我们先从一种“不那么正确”但是容易懂的Stacking方法讲起。
Stacking模型本质上是一种分层的结构,我们先分析下面二级Stacking:

假设我们有2个基模型 M1、M2 和 一个次级模型M3
Step 1. 基模型 M1,对训练集train训练,然后用于预测 train 和 test 的标签列,分别是P1,T1. M1 模型训练:

( ⋮ X t r a i n ⋮ ) ⟹ ⏞ M1 Train ( ⋮ Y T r u e ⋮ ) \left(\begin{array}{c}{\vdots} \\ {X_{train}} \\ {\vdots}\end{array}\right) \overbrace{\Longrightarrow}^{\text {M1 Train} }\left(\begin{array}{c}{\vdots} \\ {Y}_{True} \\ {\vdots}\end{array}\right) Xtrain M1 TrainYTrue

训练后的模型 M1 分别在 train 和 test 上预测,得到预测标签分别是P1,T1

( ⋮ X t r a i n ⋮ ) ⟹ ⏞ M1 Predict ( ⋮ P 1 ⋮ ) . \left(\begin{array}{c}{\vdots} \\ {X_{train}} \\{\vdots}\end{array}\right) \overbrace{\Longrightarrow}^{\text {M1 Predict} }\left(\begin{array}{c}{\vdots} \\ {P}_{1} \\{\vdots}\end{array}\right). Xtrain M1 PredictP1.

( ⋮ X t e s t ⋮ ) ⟹ ⏞ M1 Predict ( ⋮ T 1 ⋮ ) \left(\begin{array}{c}{\vdots} \\ {X_{test}} \\ {\vdots}\end{array}\right) \overbrace{\Longrightarrow}^{\text {M1 Predict} }\left(\begin{array}{c}{\vdots} \\ {T_{1}} \\ {\vdots}\end{array}\right) Xtest M1 PredictT1

Step 2. 基模型 M2 ,对训练集train训练,然后用于预测train和test的标签列,分别是P2,T2

M2 模型训练:

( ⋮ X t r a i n ⋮ ) ⟹ ⏞ M2 Train ( ⋮ Y T r u e ⋮ ) \left(\begin{array}{c}{\vdots} \\ {X_{train}} \\ {\vdots}\end{array}\right) \overbrace{\Longrightarrow}^{\text {M2 Train} }\left(\begin{array}{c}{\vdots} \\ {Y}_{True} \\ {\vdots}\end{array}\right) Xtrain M2 TrainYTrue

训练后的模型 M2 分别在 train 和 test 上预测,得到预测标签分别是P2,T2

( ⋮ X t r a i n ⋮ ) ⟹ ⏞ M2 Predict ( ⋮ P 2 ⋮ ) \left(\begin{array}{c}{\vdots} \\ {X_{train}} \\ {\vdots}\end{array}\right) \overbrace{\Longrightarrow}^{\text {M2 Predict} }\left(\begin{array}{c}{\vdots} \\ {P}_{2} \\ {\vdots}\end{array}\right) Xtrain M2 PredictP2

( ⋮ X t e s t ⋮ ) ⟹ ⏞ M2 Predict ( ⋮ T 2 ⋮ ) \left(\begin{array}{c}{\vdots} \\ {X_{test}} \\ {\vdots}\end{array}\right) \overbrace{\Longrightarrow}^{\text {M2 Predict} }\left(\begin{array}{c}{\vdots} \\ {T_{2}} \\ {\vdots}\end{array}\right) Xtest M2 PredictT2

Step 3. 分别把P1,P2以及T1,T2合并,得到一个新的训练集和测试集train2,test2.

( ⋮ P 1 ⋮ ⋮ P 2 ⋮ ) ⏞ Train2  a n d ( ⋮ T 1 ⋮ ⋮ T 2 ⋮ ) ⏞ Test2  \overbrace{\left(\begin{array}{c}{\vdots} \\ {P_{1}} \\ {\vdots}\end{array} \begin{array}{c}{\vdots} \\ {P_{2}} \\ {\vdots}\end{array} \right)}^{\text {Train2 }} and \overbrace{\left(\begin{array}{c}{\vdots} \\ {T_{1}} \\ {\vdots}\end{array} \begin{array}{c}{\vdots} \\ {T_{2}} \\ {\vdots}\end{array} \right)}^{\text {Test2 }} P1P2 Train2 andT1T2 Test2 

再用 次级模型 M3 以真实训练集标签为标签训练,以train2为特征进行训练,预测test2,得到最终的测试集预测的标签列 Y P r e Y_{Pre} YPre

( ⋮ P 1 ⋮ ⋮ P 2 ⋮ ) ⏞ Train2  ⟹ ⏞ M3 Train ( ⋮ Y T r u e ⋮ ) \overbrace{\left(\begin{array}{c}{\vdots} \\ {P_{1}} \\ {\vdots}\end{array} \begin{array}{c}{\vdots} \\ {P_{2}} \\ {\vdots}\end{array} \right)}^{\text {Train2 }} \overbrace{\Longrightarrow}^{\text {M3 Train} }\left(\begin{array}{c}{\vdots} \\ {Y}_{True} \\ {\vdots}\end{array}\right) P1P2 Train2  M3 TrainYTrue

( ⋮ T 1 ⋮ ⋮ T 2 ⋮ ) ⏞ Test2  ⟹ ⏞ M3 Predict ( ⋮ Y P r e ⋮ ) \overbrace{\left(\begin{array}{c}{\vdots} \\ {T_{1}} \\ {\vdots}\end{array} \begin{array}{c}{\vdots} \\ {T_{2}} \\ {\vdots}\end{array} \right)}^{\text {Test2 }} \overbrace{\Longrightarrow}^{\text {M3 Predict} }\left(\begin{array}{c}{\vdots} \\ {Y}_{Pre} \\ {\vdots}\end{array}\right) T1T2 Test2  M3 PredictYPre

这就是我们两层Stacking的一种基本的原始思路想法。在不同模型预测的结果基础上再加一层模型,进行再训练,从而得到模型最终的预测。而上述的Stacking方法的“不正确”在于用训练集训练再去预测训练集,这样当训练集的标签分布和测试集的标签分布不一致时,很容易造成过拟合。为了防止过拟合,我们有两种方法:

  • 次级模型尽量选择简单的线性模型
  • 利用K折交叉验证

K折交叉验证Stacking:
在这里插入图片描述

5.3.3 Stacking代码示例
回归Stacking
## 生成一些简单的样本数据,test_prei 代表第i个模型的预测值
train_reg1 = [3.2, 8.2, 9.1, 5.2]
train_reg2 = [2.9, 8.1, 9.0, 4.9]
train_reg3 = [3.1, 7.9, 9.2, 5.0]

# y_test_true 代表第模型的真实值
y_train_true = [3, 8, 9, 5] 

test_pre1 = [1.2, 3.2, 2.1, 6.2]
test_pre2 = [0.9, 3.1, 2.0, 5.9]
test_pre3 = [1.1, 2.9, 2.2, 6.0]

# y_test_true 代表第模型的真实值
y_test_true = [1, 3, 2, 6] 


def Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,test_pre1,test_pre2,test_pre3,model_L2= linear_model.LinearRegression()):
    model_L2.fit(pd.concat([pd.Series(train_reg1),pd.Series(train_reg2),pd.Series(train_reg3)],axis=1).values,y_train_true)
    Stacking_result = model_L2.predict(pd.concat([pd.Series(test_pre1),pd.Series(test_pre2),pd.Series(test_pre3)],axis=1).values)
    return Stacking_result


model_L2= linear_model.LinearRegression()
Stacking_pre = Stacking_method(train_reg1,train_reg2,train_reg3,y_train_true,
                               test_pre1,test_pre2,test_pre3,model_L2)
print('Stacking_pre MAE:',metrics.mean_absolute_error(y_test_true, Stacking_pre))

output:

Stacking_pre MAE: 0.0421348314607

可以发现模型结果相对于之前有进一步的提升,这是我们需要注意的一点是,对于第二层Stacking的模型不宜选取的过于复杂,这样会导致模型在训练集上过拟合,从而使得在测试集上并不能达到很好的效果。

分类Stacking(5-Fold Stacking)
#创建训练的数据集
data_0 = iris.data
data = data_0[:100,:]

target_0 = iris.target
target = target_0[:100]

#模型融合中使用到的各个单模型
clfs = [LogisticRegression(solver='lbfgs'),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]
 
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)

dataset_blend_train = np.zeros((X.shape[0], len(clfs)))
dataset_blend_test = np.zeros((X_predict.shape[0], len(clfs)))

#5折stacking
n_splits = 5
skf = StratifiedKFold(n_splits)
skf = skf.split(X, y)

for j, clf in enumerate(clfs):
    #依次训练各个单模型
    dataset_blend_test_j = np.zeros((X_predict.shape[0], 5))
    for i, (train, test) in enumerate(skf):
        #5-Fold交叉训练,使用第i个部分作为预测,剩余的部分来训练模型,获得其预测的输出作为第i部分的新特征。
        X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]
        clf.fit(X_train, y_train)
        y_submission = clf.predict_proba(X_test)[:, 1]
        dataset_blend_train[test, j] = y_submission
        dataset_blend_test_j[:, i] = clf.predict_proba(X_predict)[:, 1]
    #对于测试集,直接用这k个模型的预测值均值作为新的特征。
    dataset_blend_test[:, j] = dataset_blend_test_j.mean(1)
    print("val auc Score: %f" % roc_auc_score(y_predict, dataset_blend_test[:, j]))

clf = LogisticRegression(solver='lbfgs')
clf.fit(dataset_blend_train, y)
y_submission = clf.predict_proba(dataset_blend_test)[:, 1]

print("Val auc Score of Stacking: %f" % (roc_auc_score(y_predict, y_submission)))

output:

val auc Score: 1.000000
val auc Score: 0.500000
val auc Score: 0.500000
val auc Score: 0.500000
val auc Score: 0.500000
Val auc Score of Stacking: 1.000000
分类的Stacking(mlxtend)

以下引用自mlxtend文档:

iris = datasets.load_iris()
X, y = iris.data[:, 1:3], iris.target

clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = RandomForestClassifier(random_state=1)
clf3 = GaussianNB()
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3], 
                          meta_classifier=lr)

label = ['KNN', 'Random Forest', 'Naive Bayes', 'Stacking Classifier']
clf_list = [clf1, clf2, clf3, sclf]

fig = plt.figure(figsize=(10,8))
gs = gridspec.GridSpec(2, 2)
grid = itertools.product([0,1],repeat=2)

clf_cv_mean = []
clf_cv_std = []
for clf, label, grd in zip(clf_list, label, grid):
        
    scores = cross_val_score(clf, X, y, cv=3, scoring='accuracy')
    print("Accuracy: %.2f (+/- %.2f) [%s]" %(scores.mean(), scores.std(), label))
    clf_cv_mean.append(scores.mean())
    clf_cv_std.append(scores.std())
        
    clf.fit(X, y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=X, y=y, clf=clf)
    plt.title(label)

plt.show()

output:

Accuracy: 0.91 (+/- 0.01) [KNN]
Accuracy: 0.95 (+/- 0.01) [Random Forest]
Accuracy: 0.91 (+/- 0.02) [Naive Bayes]
Accuracy: 0.95 (+/- 0.02) [StackingClassifier]

在这里插入图片描述

5.4 Blending

Blending,其实和Stacking是一种类似的多层模型融合的形式。

其主要思路是把原始的训练集先分成两部分,比如70%的数据作为新的训练集,剩下30%的数据作为测试集。

在第一层,我们在这70%的数据上训练多个模型,然后去预测那30%数据的label,同时也预测test集的label。

在第二层,我们就直接用这30%数据在第一层预测的结果做为新特征继续训练,然后用test集第一层预测的label做特征,用第二层训练的模型做进一步预测

data_0 = iris.data
data = data_0[:100,:]

target_0 = iris.target
target = target_0[:100]
 
#模型融合中使用到的各个单模型
clfs = [LogisticRegression(solver='lbfgs'),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        #ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]
 
#切分一部分数据作为测试集
X, X_predict, y, y_predict = train_test_split(data, target, test_size=0.3, random_state=2020)

#切分训练数据集为d1,d2两部分
X_d1, X_d2, y_d1, y_d2 = train_test_split(X, y, test_size=0.5, random_state=2020)
dataset_d1 = np.zeros((X_d2.shape[0], len(clfs)))
dataset_d2 = np.zeros((X_predict.shape[0], len(clfs)))
 
for j, clf in enumerate(clfs):
    #依次训练各个单模型
    clf.fit(X_d1, y_d1)
    y_submission = clf.predict_proba(X_d2)[:, 1]
    dataset_d1[:, j] = y_submission
    #对于测试集,直接用这k个模型的预测值作为新的特征。
    dataset_d2[:, j] = clf.predict_proba(X_predict)[:, 1]
    print("val auc Score: %f" % roc_auc_score(y_predict, dataset_d2[:, j]))

#融合使用的模型
clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
clf.fit(dataset_d1, y_d2)
y_submission = clf.predict_proba(dataset_d2)[:, 1]
print("Val auc Score of Blending: %f" % (roc_auc_score(y_predict, y_submission)))

ouput:

val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
val auc Score: 1.000000
Val auc Score of Blending: 1.000000

Blending优缺点:

优点:

  1. 比stacking简单(因为不用进行k次的交叉验证来获得stacker feature)
  2. 避开了一个信息泄露问题:generlizers和stacker使用了不一样的数据集

缺点在于:

  1. 使用了很少的数据(第二阶段的blender只使用training set10%的量)
  2. blender可能会过拟合
  3. stacking使用多次的交叉验证会比较稳健
5.5 boosting

Boosting的思想是一种迭代的方法,每一次训练的时候都更加关心分类错误的样例,给这些分类错误的样例增加更大的权重,下一次迭代的目标就是能够更容易辨别出上一轮分类错误的样例。最终将这些弱分类器进行加权相加。

来自加州大学欧文分校Alex Ihler教授的两页PPT:
在这里插入图片描述
在这里插入图片描述

5.6 bagging

Bagging就是采用有放回的方式进行抽样,用抽样的样本建立子模型,对子模型进行训练,这个过程重复多次,最后进行融合。大概分为这样两步:
1.重复K次

(1) 有放回地重复抽样建模
(2) 训练子模型

2.模型融合

(1) 分类问题:voting
(2) 回归问题:average

Bagging算法不用我们自己实现,随机森林就是基于Bagging算法的一个典型例子,采用的基分类器是决策树。R和python都集成好了,直接调用。

5.7 其他办法

将特征放进模型中预测,并将预测结果变换并作为新的特征加入原有特征中再经过模型预测结果 (可以反复预测多次将结果加入最后的特征中)

def Ensemble_add_feature(train,test,target,clfs):
    
    # n_flods = 5
    # skf = list(StratifiedKFold(y, n_folds=n_flods))

    train_ = np.zeros((train.shape[0],len(clfs*2)))
    test_ = np.zeros((test.shape[0],len(clfs*2)))

    for j,clf in enumerate(clfs):
        '''依次训练各个单模型'''
        # print(j, clf)
        '''使用第1个部分作为预测,第2部分来训练模型,获得其预测的输出作为第2部分的新特征。'''
        # X_train, y_train, X_test, y_test = X[train], y[train], X[test], y[test]

        clf.fit(train,target)
        y_train = clf.predict(train)
        y_test = clf.predict(test)

        ## 新特征生成
        train_[:,j*2] = y_train**2
        test_[:,j*2] = y_test**2
        train_[:, j+1] = np.exp(y_train)
        test_[:, j+1] = np.exp(y_test)
        # print("val auc Score: %f" % r2_score(y_predict, dataset_d2[:, j]))
        print('Method ',j)
    
    train_ = pd.DataFrame(train_)
    test_ = pd.DataFrame(test_)
    return train_,test_
data_0 = iris.data
data = data_0[:100,:]

target_0 = iris.target
target = target_0[:100]

x_train,x_test,y_train,y_test=train_test_split(data,target,test_size=0.3)
x_train = pd.DataFrame(x_train) ; x_test = pd.DataFrame(x_test)

#模型融合中使用到的各个单模型
clfs = [LogisticRegression(),
        RandomForestClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='gini'),
        ExtraTreesClassifier(n_estimators=5, n_jobs=-1, criterion='entropy'),
        GradientBoostingClassifier(learning_rate=0.05, subsample=0.5, max_depth=6, n_estimators=5)]

New_train,New_test = Ensemble_add_feature(x_train,x_test,y_train,clfs)

clf = LogisticRegression()
# clf = GradientBoostingClassifier(learning_rate=0.02, subsample=0.5, max_depth=6, n_estimators=30)
clf.fit(New_train, y_train)
y_emb = clf.predict_proba(New_test)[:, 1]

print("Val auc Score of stacking: %f" % (roc_auc_score(y_test, y_emb)))

output:

Method  0
Method  1
Method  2
Method  3
Method  4
Val auc Score of stacking: 1.000000
5.7 赛题示例
5.7.1 读取数据并作处理
Train_data = pd.read_csv('datalab/231784/used_car_train_20200313.csv', sep=' ')
TestA_data = pd.read_csv('datalab/231784/used_car_testA_20200313.csv', sep=' ')

numerical_cols = Train_data.select_dtypes(exclude = 'object').columns

feature_cols = [col for col in numerical_cols if col not in ['SaleID','name','regDate','price']]

X_data = Train_data[feature_cols]
Y_data = Train_data['price']
X_test  = TestA_data[feature_cols]

X_data = X_data.fillna(-1)
X_test = X_test.fillna(-1)

## 简单的LR(线性回归),用来进行对比
val_lr_pred = model_lr.predict(x_val)
MAE_lr = mean_absolute_error(y_val,val_lr_pred)
print('MAE of lr:',MAE_lr)

output:

MAE of lr: 2597.45638384
5.7.2 模型函数
def build_model_lr(x_train,y_train):
    reg_model = linear_model.LinearRegression()
    reg_model.fit(x_train,y_train)
    return reg_model

def build_model_ridge(x_train,y_train):
    reg_model = linear_model.Ridge(alpha=0.8)#alphas=range(1,100,5)
    reg_model.fit(x_train,y_train)
    return reg_model

def build_model_lasso(x_train,y_train):
    reg_model = linear_model.LassoCV()
    reg_model.fit(x_train,y_train)
    return reg_model

def build_model_gbdt(x_train,y_train):
    estimator =GradientBoostingRegressor(loss='ls',subsample= 0.85,max_depth= 5,n_estimators = 100)
    param_grid = { 
            'learning_rate': [0.05,0.08,0.1,0.2],
            }
    gbdt = GridSearchCV(estimator, param_grid,cv=3)
    gbdt.fit(x_train,y_train)
    print(gbdt.best_params_)
    # print(gbdt.best_estimator_ )
    return gbdt

def build_model_xgb(x_train,y_train):
    model = xgb.XGBRegressor(n_estimators=120, learning_rate=0.08, gamma=0, subsample=0.8,\
        colsample_bytree=0.9, max_depth=5) #, objective ='reg:squarederror'
    model.fit(x_train, y_train)
    return model

def build_model_lgb(x_train,y_train):
    estimator = lgb.LGBMRegressor(num_leaves=63,n_estimators = 100)
    param_grid = {
        'learning_rate': [0.01, 0.05, 0.1],
    }
    gbm = GridSearchCV(estimator, param_grid)
    gbm.fit(x_train, y_train)
    return gbm
5.7.3 XGBoost的五折交叉回归验证实现

这里只是插入一个模型调参的方法实现

## xgb
xgr = xgb.XGBRegressor(n_estimators=120, learning_rate=0.1, subsample=0.8,\
        colsample_bytree=0.9, max_depth=7) # ,objective ='reg:squarederror'

scores_train = []
scores = []

## 5折交叉验证方式
sk=StratifiedKFold(n_splits=5,shuffle=True,random_state=0)
for train_ind,val_ind in sk.split(X_data,Y_data):
    
    train_x=X_data.iloc[train_ind].values
    train_y=Y_data.iloc[train_ind]
    val_x=X_data.iloc[val_ind].values
    val_y=Y_data.iloc[val_ind]
    
    xgr.fit(train_x,train_y)
    pred_train_xgb=xgr.predict(train_x)
    pred_xgb=xgr.predict(val_x)
    
    score_train = mean_absolute_error(train_y,pred_train_xgb)
    scores_train.append(score_train)
    score = mean_absolute_error(val_y,pred_xgb)
    scores.append(score)

print('Train mae:',np.mean(score_train))
print('Val mae',np.mean(scores))

ouput:

Train mae: 558.212360169
Val mae 693.120168439
5.7.4 划分数据集,并用多种方法训练和预测
x_train,x_val,y_train,y_val = train_test_split(X_data,Y_data,test_size=0.3)

## Train and Predict
model_lr = build_model_lr(x_train,y_train)
val_lr = model_lr.predict(x_val)
subA_lr = model_lr.predict(X_test)

model_ridge = build_model_ridge(x_train,y_train)
val_ridge = model_ridge.predict(x_val)
subA_ridge = model_ridge.predict(X_test)

model_lasso = build_model_lasso(x_train,y_train)
val_lasso = model_lasso.predict(x_val)
subA_lasso = model_lasso.predict(X_test)

model_gbdt = build_model_gbdt(x_train,y_train)
val_gbdt = model_gbdt.predict(x_val)
subA_gbdt = model_gbdt.predict(X_test)

model_xgb = build_model_xgb(x_train,y_train)
val_xgb = model_xgb.predict(x_val)
subA_xgb = model_xgb.predict(X_test)

model_lgb = build_model_lgb(x_train,y_train)
val_lgb = model_lgb.predict(x_val)
subA_lgb = model_lgb.predict(X_test)
5.7.5 加权融合
def Weighted_method(test_pre1,test_pre2,test_pre3,w=[1/3,1/3,1/3]):
    Weighted_result = w[0]*pd.Series(test_pre1)+w[1]*pd.Series(test_pre2)+w[2]*pd.Series(test_pre3)
    return Weighted_result

## Init the Weight
w = [0.3,0.4,0.3]

## 测试验证集准确度
val_pre = Weighted_method(val_lgb,val_xgb,val_gbdt,w)
MAE_Weighted = mean_absolute_error(y_val,val_pre)
print('MAE of Weighted of val:',MAE_Weighted)

## 预测数据部分
subA = Weighted_method(subA_lgb,subA_xgb,subA_gbdt,w)
print('Sta inf:')
Sta_inf(subA)
## 生成提交文件
sub = pd.DataFrame()
sub['SaleID'] = X_test.index
sub['price'] = subA
sub.to_csv('./sub_Weighted.csv',index=False)

output:

MAE of Weighted of val: 730.877443666
Sta inf:
_min -2816.93914153
_max: 88576.7842223
_mean 5920.38233546
_ptp 91393.7233639
_std 7325.20946801
_var 53658693.7502

我们可以看出可以对比简单的线性回归有比较大的提升。

5.7.6 Stacking融合
第一层
train_lgb_pred = model_lgb.predict(x_train)
train_xgb_pred = model_xgb.predict(x_train)
train_gbdt_pred = model_gbdt.predict(x_train)

Strak_X_train = pd.DataFrame()
Strak_X_train['Method_1'] = train_lgb_pred
Strak_X_train['Method_2'] = train_xgb_pred
Strak_X_train['Method_3'] = train_gbdt_pred

Strak_X_val = pd.DataFrame()
Strak_X_val['Method_1'] = val_lgb
Strak_X_val['Method_2'] = val_xgb
Strak_X_val['Method_3'] = val_gbdt

Strak_X_test = pd.DataFrame()
Strak_X_test['Method_1'] = subA_lgb
Strak_X_test['Method_2'] = subA_xgb
Strak_X_test['Method_3'] = subA_gbdt
第二层
model_lr_Stacking = build_model_lr(Strak_X_train,y_train)
## 训练集
train_pre_Stacking = model_lr_Stacking.predict(Strak_X_train)
print('MAE of Stacking-LR:',mean_absolute_error(y_train,train_pre_Stacking))

## 验证集
val_pre_Stacking = model_lr_Stacking.predict(Strak_X_val)
print('MAE of Stacking-LR:',mean_absolute_error(y_val,val_pre_Stacking))

## 预测集
subA_Stacking = model_lr_Stacking.predict(Strak_X_test)

subA_Stacking[subA_Stacking<10]=10  ## 去除过小的预测值

sub = pd.DataFrame()
sub['SaleID'] = X_test.index
sub['price'] = subA_Stacking
sub.to_csv('./sub_Stacking.csv',index=False)

ouput:

MAE of Stacking-LR: 628.399441036
MAE of Stacking-LR: 707.673951794
5.8 模型融合经验总结

来自datawhale的ML67大大

比赛的融合这个问题,个人的看法来说其实涉及多个层面,也是提分和提升模型鲁棒性的一种重要方法:

1)结果层面的融合,这种是最常见的融合方法,其可行的融合方法也有很多,比如根据结果的得分进行加权融合,还可以做Log,exp处理等。在做结果融合的时候,有一个很重要的条件是模型结果的得分要比较近似,然后结果的差异要比较大,这样的结果融合往往有比较好的效果提升。

2)特征层面的融合,这个层面其实感觉不叫融合,准确说可以叫分割,很多时候如果我们用同种模型训练,可以把特征进行切分给不同的模型,然后在后面进行模型或者结果融合有时也能产生比较好的效果。

3)模型层面的融合,模型层面的融合可能就涉及模型的堆叠和设计,比如加Staking层,部分模型的结果作为特征输入等,这些就需要多实验和思考了,基于模型层面的融合最好不同模型类型要有一定的差异,用同种模型不同的参数的收益一般是比较小的。

总结

本文只是简单描述模型融合,模型融合可以参考下面这两篇写得好得多的文章:

经过14天,我算是完成所有任务了。感觉自己只是简单地了解主要的方法,代码也是参照着大大们的代码敲一遍。虽然有尝试,但是还是感觉自己的没有很好地学会怎么应用。不过,自己的最初目的也只是想了解比赛的大致流程,之前自己只是学习了机器学习的知识理论,对如何参加比赛还是很茫然,现在至少学会如何实战,如何构建一个简单的模型了,感觉还是很有收获。我会继续朝这个方向努力前进的,fighting!

文章参考

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值