秋招第一站:快手

面试官提问:
java:

  1. 静态方法和非静态方法的区别,他们之间的调用关系如何?(答错了,完全答反了,下次不会的,就直接说不会,让面试官问别的,不要不答错误的东西)
  2. 面向对象的基本特性(答出来了,但是解释的不多,下次可以多解释一点)
  3. java常用的list类型的类有哪些,区别是什么?(回答了arrayList和linkedList)
    计算机网络:
  4. 七层架构是那七层
  5. ip协议在那一层?(就是在网络层,但是面试官和我的理解似乎不一样?然后我就质疑了自己,我难受!)
    操作系统:
  6. 进程和线程的区别(√)
  7. 两个()通讯应该填进程还是线程(回答出来了进程,也回答了进程通讯的方法,但是似乎没有到理解层面)
  8. 校园学生管理系统(id,name,class,sex),那些适合做索引,那些不适合(自我感觉:回答出了,但是理由还不够,只说出了一两个点,今后要加强)
  9. 熟悉的linux命令有哪些(答出来了比较多,面试官没有打断,下次回答可以更有逻辑性,分类回答)
    数据结构:
  10. 常用的一些数据结构有哪些?(图没有答)
  11. 树的遍历方式有哪些
  12. 队列和栈的区别是什么?
    实习经历:
  13. 在实习期间做了什么(自己做的,其他人做的)
  14. 在实习期间有遇到的一些困难?
  15. 项目没有问呜呜呜太难了(可能觉得我不会)。

算法题:
16. 有效的括号(Character一直没拼对,真是要哭了,还好面试官提醒了,输出也不熟悉,leetcode刷多了的后遗症,但最后还是答出来了)

总体感受:
java基础应该也需要加强全看jvm,gc等等去了,呜呜呜真的难受。以后不懂的还是跳过不答,看看是否会问,还有有些东西只会用不会理解…
要注意,千万不能被炸呜呜

二面:
问了好多

  1. 自我介绍
  2. 研究项目介绍一下?(追着问了很多,面试官还是很懂的)
  3. 有考虑过在哪里发展吗?是否在美团走了留用流程?
  4. 实习做了什么?发现了哪些问题,你是怎么展开接口测试的?挑一个需求讲讲?
  5. 录制回放探讨了很多
  6. 知道hashmap的原理吗?(真的不能因为是侧开,所以觉得轻松,可一点也不轻松)
  7. GC有哪几种方法,常用的GC收集器有那些?有什么区别?
  8. sql的4个特性
  9. mysql最常用的隔离级别是什么
  10. 死锁了解吗?怎么才能形成死锁?如何解决死锁呢?
  11. 多线程的单线程的区别是什么,它们的运行时间,一定多线程比单线程快吗?
  12. jdk,jre,jvm分别是什么有什么区别和联系?
  13. 电商场景的测试用例设计,异常场景和完整地覆盖面
  14. 算法题没有刷出来,一个求图的遍历(岛屿问题)呜呜,害,但是和面试官聊得很愉快,但是没做出来题,感觉又是很遗憾的事情
    反问:
    公司的技术用到了那些?
    有哪些还需要加强的?
    如何用面试官听的懂得话,讲述出所有得内容
在当今计算机视觉领域,深度学习模型在图像分割任务中发挥着关键作用,其中 UNet 是一种在医学影像分析、遥感图像处理等领域广泛应用的经典架构。然而,面对复杂结构和多尺度特征的图像,UNet 的性能存在局限性。因此,Nested UNet(也称 UNet++)应运而生,它通过改进 UNet 的结构,增强了特征融合能力,提升了复杂图像的分割效果。 UNet 是 Ronneberger 等人在 2015 年提出的一种卷积神经网络,主要用于生物医学图像分割。它采用对称的编码器 - 解码器结构,编码器负责提取图像特征,解码器则将特征映射回原始空间,生成像素级预测结果。其跳跃连接设计能够有效传递低层次的细节信息,从而提高分割精度。 尽管 UNet 在许多场景中表现出色,但在处理复杂结构和多尺度特征的图像时,性能会有所下降。Nested UNet 通过引入更深层次的特征融合来解决这一问题。它在不同尺度上建立了密集的连接路径,增强了特征的传递与融合。这种“嵌套”结构不仅保持了较高分辨率,还增加了特征学习的深度,使模型能够更好地捕获不同层次的特征,从而显著提升了复杂结构的分割效果。 模型结构:在 PyTorch 中,可以使用 nn.Module 构建 Nested UNet 的网络结构。编码器部分包含多个卷积层和池化层,并通过跳跃连接传递信息;解码器部分则包含上采样层和卷积层,并与编码器的跳跃连接融合。每个阶段的连接路径需要精心设计,以确保不同尺度信息的有效融合。 编码器 - 解码器连接:Nested UNet 的核心在于多层次的连接。通过在解码器中引入“skip connection blocks”,将编码器的输出与解码器的输入相结合,形成一个密集的连接网络,从而实现特征的深度融合。 训练与优化:训练 Nested UNet 时,需要选择合适的损失函数和优化器。对于图像分割任务,常用的损失
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值