数据结构和算法_零基础入门02_算法时间、空间复杂度
b站学习小甲鱼的数据结构与算法,自留笔记。
一、算法效率的度量方法
度量效率(算法的执行时间)的方法:
事后统计方法:
设计测试程序和数据,利用计算机计时器对不同算法运行时间做比较。
缺:算法和测试程序一对一,要事先编写测试程序;不同测试环境差别很大。
事前分析估算方法:(用这个)
计算机程序编写前,统计方法进行估算。
高级语言编写的程序,运行消耗的时间取决于:
1. 算法的策略、方案
2.编译产生的代码的质量
3.问题输入规模
4.机器执行指令的速度
算法的复杂度,侧重于研究算法随输入规模的扩大而增长的一个抽象。把基本操作的数量与输入模式关联起来。
判断算法好坏,需要有足够的测试数据才可。
判断一个算法的效率时,函数中的常数和其他次要项常数可忽略;主要关注主项(最高项)的阶数。
二、算法时间、空间复杂度
2.1 算法时间复杂度:
语句总的执行次数T(n),问题规模n。
分析T(n)随n的变化情况、T(n)的数量级。
算法的渐进时间复杂度,简称时间复杂度。记作:T(n)=O(f(n))。
表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同。f(n)是n的某个函数。
2.1.1 大O记法:O( )体现算法时间复杂度的记法。
随着n的增加,T(n)增长最慢的算法为最优算法。
推导大O阶方法:
- 常数1取代运行时间中的所有加法常数。
- 只保留运行次数中最高阶项n^
- 最高阶项存在且不为1,则系数变为1
最终得到大O阶。
2.1.2 时间复杂度计算的例子:
1.常数阶
int sum=0,n=100;
print("大O记法");
print("大O记法");
print("大O记法");
print("大O记法");
print("大O记法");
print("大O记法");
sum=(1+n)*n/2;
这段代码的大O为:O(1);注意不是O(8);
2.线性阶
含有非嵌套的循环;随着问题规模n的增加,对应计算次数呈直线增长。
int i,n=100,sum=0;
for(i=0;i<n;i++)
{
sum=sum+1;
}
O(n)
3.平方阶
含有嵌套的循环
①
int i,j,n=100;
for(i=0;i<n;i++)
{
for(j=0;j<n;j++)
{
print("平方阶")
}
}
外层执行一次,内层执行n次,所以n^ n。
即O(n^2)
②
int i,j,n=100;
for(i=0;i<n;i++)
{
for(j=i;j<n;j++)
{
print("平方阶")
}
}
总的执行次数:n+(n-1)+…+1=n(n+1)/2=1/2 n^2+n/2;
运用攻略后,即O(n^2)
4.对数阶
int i=1,n=100;
while(i<n)
{
i=i*2;
}
每次i*2后,影响i<n的判断。设x次2相乘后大于等于n,则退出循环。所以2^x=n→x=log(2)n。
即时间复杂度为O(log(n))
5.函数调用的时间复杂度分析
①
int i,j;
for(i=0;i<n;i++)
{
function(i);
}
void function(int count)
{
print("%d",count);
}
function函数的时间复杂度O(1)
所以整体的时间复杂度是循环的次数,所以为O(n)。
②若function函数改为:
void function(int count)
{
int j;
for(j=count;j<n;j++)
{
print("%d",j);
}
}
(1+n)*n/2=1/2 n^2+n/2;
运用攻略后,即O(n^2)。
2.1.3 常见的时间复杂度:
常数阶: O(1)
线性阶: O(n)
平方阶: O(n^2)
对数阶: O(logn)
nlogn阶: O(nlogn)
立方阶: O(n^3)
指数阶: O(2^n)
耗费的时间从小到大排序:
O(1)<O(logn)<O(n)< O(nlogn)<O(n^ 2)<O(n^ 3 )< O(2 ^ n)< O(n!) <O(n^n)
2.1.4 最坏情况和平均情况:
最坏运行时间:最重要的需求,非特别要求,通常都指的是这个。
平均运行时间:期望的运行时间。
例:查询一个n个的随机数中的某个数字,最好的算法时间复杂度O(1),最差是最后一个查到,O(n)。
2.2 算法空间复杂度:
可以用空间换取时间。
算法空间复杂度:计算算法所需的存储空间,S(n)=O(f(n))
问题的规模n;f(n)为语句中关于n所占存储空间的函数。