I - Summer Holiday HDU - 1827
To see a World in a Grain of Sand
And a Heaven in a Wild Flower,
Hold Infinity in the palm of your hand
And Eternity in an hour.
—— William Blake
听说lcy帮大家预定了新马泰7日游,Wiskey真是高兴的夜不能寐啊,他想着得快点把这消息告诉大家,虽然他手上有所有人的联系方式,但是一个一个联系过去实在太耗时间和电话费了。他知道其他人也有一些别人的联系方式,这样他可以通知其他人,再让其他人帮忙通知一下别人。你能帮Wiskey计算出至少要通知多少人,至少得花多少电话费就能让所有人都被通知到吗?
Input
多组测试数组,以EOF结束。
第一行两个整数N和M(1<=N<=1000, 1<=M<=2000),表示人数和联系对数。
接下一行有N个整数,表示Wiskey联系第i个人的电话费用。
接着有M行,每行有两个整数X,Y,表示X能联系到Y,但是不表示Y也能联系X。
Output
输出最小联系人数和最小花费。
每个CASE输出答案一行。
Sample Input
12 16 2 2 2 2 2 2 2 2 2 2 2 2 1 3 3 2 2 1 3 4 2 4 3 5 5 4 4 6 6 4 7 4 7 12 7 8 8 7 8 9 10 9 11 10
Sample Output
3 6
给你n个点,m条边,告诉你每个点的花费
问你要通知到所有点,需要至少通知几个点,最少花费是多少
Tarjan先缩点,得到每个强联通分量的最小价值
只有入度为0的点是一定要通知的,其他的点都会被别的点走到
#include <iostream>
#include <cstdio>
#include <vector>
#include <cstring>
using namespace std;
#define inf 0x3f3f3f3f
#define maxn 10010
int n,m;
vector<int> g[maxn];
int Bcnt; // 强连通分量的个数;
int Top; // 栈顶;
int Index; // 时间戳;
int low[maxn], dfn[maxn];
int belong[maxn], Stack[maxn];
bool instack[maxn];
int in[maxn],out[maxn],cost[maxn],ans[maxn];
void Init_tarjan()
{
Bcnt= Top= Index= 0;
for(int i=1; i<=n; i++)
{
in[i]=out[i]=0;
ans[i]=inf;
g[i].clear();
low[i]= dfn[i]= 0;
}
}
void Tarjan(int u)
{
Stack[Top++]= u;
instack[u]= 1;
low[u]= dfn[u]= ++Index;
for(int i=0; i<g[u].size(); i++)
{
int v= g[u][i];
if( !dfn[v] )
{
Tarjan(v);
low[u]= min( low[v], low[u] );
}
else if( instack[v] )
low[u]= min( low[u], dfn[v] );
}
if( low[u]==dfn[u] )
{
++Bcnt;
int v;
do{
v= Stack[--Top];
instack[v]= 0;
belong[v]= Bcnt;
ans[Bcnt]=min(ans[Bcnt],cost[v]);
}while( u!=v );
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
Init_tarjan();
for(int i=1;i<=n;i++) scanf("%d",&cost[i]);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
g[x].push_back(y);
}
for(int i=1;i<=n;i++)
{
if(!dfn[i]) Tarjan(i);
}
int sum=0,sum1=0;
for(int i=1;i<=n;i++)
{
for(int j=0;j<g[i].size();j++)
{
int v=g[i][j];
if(belong[i]!=belong[v])
{
out[belong[i]]++,in[belong[v]]++;
}
}
}
for(int i=1;i<=Bcnt;i++)
{
if(!in[i])
{
sum++,sum1+=ans[i];
}
}
printf("%d %d\n",sum,sum1);
}
return 0;
}