动态规划--最低通行费

这是一个关于商人穿越正方形网格的问题,商人需要从左上角出发,按照规定的步数到达右下角,每走一步都需要支付相应费用。目标是找到最低费用的路径。通过动态规划的方法,初始化状态并进行状态转移,可以找到最小费用。给出的C++代码实现了这一算法,输出了样例的最小费用为109。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述

一个商人穿过一个 N × N N×N N×N 的正方形的网格,去参加一个非常重要的商务活动。

他要从网格的左上角进,右下角出。

每穿越中间 1 个小方格,都要花费 1 个单位时间。

商人必须在 <

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值