题目描述
七夕节因牛郎织女的传说而被扣上了「情人节」的帽子。
于是 TYVJ 今年举办了一次线下七夕祭。
Vani 同学今年成功邀请到了 cl 同学陪他来共度七夕,于是他们决定去 TYVJ 七夕祭游玩。
TYVJ 七夕祭和 11 区的夏祭的形式很像。
矩形的祭典会场由 N N N 排 M M M 列共计 N N N X M M M 个摊点组成。
虽然摊点种类繁多,不过 cl 只对其中的一部分摊点感兴趣,比如章鱼烧、苹果糖、棉花糖、射的屋……什么的。
Vani 预先联系了七夕祭的负责人 zhq,希望能够通过恰当地布置会场,使得各行中 cl 感兴趣的摊点数一样多,并且各列中 cl 感兴趣的摊点数也一样多。
不过 zhq 告诉 Vani,摊点已经随意布置完毕了,如果想满足 cl 的要求,唯一的调整方式就是交换两个相邻的摊点。
两个摊点相邻,当且仅当他们处在同一行或者同一列的相邻位置上。
由于 zhq 率领的 TYVJ 开发小组成功地扭曲了空间,每一行或每一列的第一个位置和最后一个位置也算作相邻。
现在 Vani 想知道他的两个要求最多能满足多少个。
在此前提下,至少需要交换多少次摊点。
输入格式
第一行包含三个整数 N N N 和 M M M 和 T T T, T T T 表示 cl 对多少个摊点感兴趣。
接下来 T T T 行,每行两个整数 x , y x, y x,y,表示 cl 对处在第 x x x 行第 y y y 列的摊点感兴趣。
输出格式
首先输出一个字符串。
如果能满足 Vani 的全部两个要求,输出 both
;
如果通过调整只能使得各行中 cl 感兴趣的摊点数一样多,输出 row
;
如果只能使各列中 cl 感兴趣的摊点数一样多,输出 column
;
如果均不能满足,输出 impossible
。
如果输出的字符串不是 impossible
, 接下来输出最小交换次数,与字符串之间用一个空格隔开。
数据范围
1
≤
N
,
M
≤
100000
1≤N,M≤100000
1≤N,M≤100000,
0
≤
T
≤
m
i
n
(
N
∗
M
,
100000
)
0≤T≤min(N∗M,100000)
0≤T≤min(N∗M,100000),
1
≤
x
≤
N
1≤x≤N
1≤x≤N,
1
≤
y
≤
M
1≤y≤M
1≤y≤M
输入样例:
2 3 4
1 3
2 1
2 2
2 3
输出样例:
row 1
算法 (贪心 + 数学)
本题和 糖果传递 类似。
思路:
- 题目默认 摊点 每次都是和上、下、左、右 四个方向进行交换一次。
- 在一行中,各列摊位之间交换位置,是不改变行的摊位数量的。列同理。或者可以理解为 两行中的摊点进行交换,对列没有任何影响。
C++ 代码
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N = 100010;
int row[N], col[N], s[N], c[N];
LL work(int n, int a[])
{
//求前缀和
for (int i = 1; i <= n; i ++ ) s[i] = s[i - 1] + a[i];
// 如果 想去的摊位总和 无法整除 行或列 的和, 则一定无解
if (s[n] % n) return -1;
int avg = s[n] / n;
c[1] = 0;
// 计算每个c[]的值
for (int i = 2; i <= n; i ++ ) c[i] = s[i - 1] - (i - 1) * avg;
sort(c + 1, c + n + 1);
LL res = 0;
// 计算每个c[]到中点的距离。
for (int i = 1; i <= n; i ++ ) res += abs(c[i] - c[(n + 1) / 2]);
return res;
}
int main()
{
int n, m, cnt;
scanf("%d%d%d", &n, &m, &cnt);
while (cnt --)
{
int x, y;
scanf("%d%d", &x, &y);
row[x] ++, col[y] ++ ;
}
LL r = work(n, row);
LL c = work(m, col);
if (r != -1 && c != -1) printf("both %lld\n", r + c);
else if (r != -1) printf("row %lld\n", r);
else if (c != -1) printf("column %lld\n", c);
else printf("impossible\n");
return 0;
}