LinkedList 源码解析

本文深入解析了LinkedList的源码,展示了其作为双向链表的数据结构特性。LinkedList适用于先入先出(FIFO)和后入先出(LIFO)场景,支持在头部和尾部快速添加与删除元素。源码分析了add、remove方法,以及优化后的节点查询策略,揭示了其高效的操作性能。但链表查询效率较低,适合于插入和删除频繁的场景。
摘要由CSDN通过智能技术生成

LinkedList 源码解析

LinkedList 适用于集合元素先入先出和陷入后出的场景,在队列源码中频繁被使用。

整体架构

LinkedList 底层数据结构是一个双向链表,整体结构如下图所示:

上图代表了一个双向链表结构,链表中的每个节点够可以向前或者向后追溯

  • 链表每个节点我们叫做 Node,
    • Node 有 prev 属性,代表前一个节点的位置
    • next 属性代表后一个节点的位置
  • first 是双向链表的头节点,它的前一个节点是 null
  • last 是双向链表的尾节点,它的后一个节点是 null
  • 当链表中没有数据时,first 和 last 是同一个节点,前后指向都为 null
  • 因为是个双向链表,只要内存足够,是没有大小限制的

链表中的元素叫做 Node ,代码如下

private static class Node<E> {
    // 节点值
    E item;
    // 指向下一个节点
    Node<E> next;
    // 指向下一个节点
    Node<E> prev;

    Node(Node<E> prev, E element, Node<E> next) {
        this.item = element;
        this.next = next;
        this.prev = prev;
    }
}

源码解析

追加(新增)

追加节点时,我们可以选择追加到链表头部,还是追加到链表尾部,add 方法默认是从尾部开始追加,addFirst 是追加到头部

从尾部追加(add)
public boolean add(E e) {
    linkLast(e);
    return true;
}

void linkLast(E e) {
    // 把尾部节点暂时存起来
    final Node<E> l = last;
    // 新建一个Node节点,
    // l:把前一个节点指向旧尾部节点
    // next指向null,
    final Node<E> newNode = new Node<>(l, e, null);
    // 尾节点赋值为新增的节点
    last = newNode;
    // 如果尾节点为null,即链表为空
    if (l == null)
        // 头节点=尾节点=新节点
        first = newNode;
    else
        // 把原尾节点的next指向新增节点
        l.next = newNode;
    // 链表size++ 版本++
    size++;
    modCount++;
}
从头部追加(addFirst)
public void addFirst(E e) {
    linkFirst(e);
}

private void linkFirst(E e) {
    // 把头节点暂存起来
    final Node<E> f = first;
    // 初始化新节点 新节点的next指向原头节点
    final Node<E> newNode = new Node<>(null, e, f);
    // 把头节点赋值为新增的及诶按
    first = newNode;
    // 如果头节点为空,即链表为空
    if (f == null)
        // 头节点=尾节点=新节点
        last = newNode;
    else
        // 把原头节点的prev指向新增节点
        f.prev = newNode;
    // 链表size++ 版本++
    size++;
    modCount++;
}

头部追加节点和尾部追加节点非常类似,只是前者是移动头部节点的 prev 指向,后者是移动尾部节点的 next 指向。

节点删除

节点删除和节点追加类似,可以选择从头部删除,也可以选择从尾部删除,删除会把节点的值、prev、next都指向 null,帮助 GC 进行回收

从头部删除
public E removeFirst() {
    final Node<E> f = first;
    if (f == null)
        throw new NoSuchElementException();
    return unlinkFirst(f);
}

private E unlinkFirst(Node<E> f) {
    // assert f == first && f != null;
    // 拿出节点值,删除完后返回
    final E element = f.item;
    // 拿出头节点的next,它将成为新的头节点
    final Node<E> next = f.next;
    // 置null,帮助GC
    f.item = null;
    f.next = null; // help GC
    // 原头节点的next成为新的头节点
    first = next;
    // 如果next为null,即链表为空
    if (next == null)
        // 头节点=尾节点=null
        last = null;
    else
        // 链表不为null,把新的头节点prev设置为null
        next.prev = null;
    // 链表size--,版本++
    size--;
    modCount++;
    // 返回删除节点的值
    return element;
}
从尾部删除
public E removeLast() {
    final Node<E> l = last;
    if (l == null)
        throw new NoSuchElementException();
    return unlinkLast(l);
}

private E unlinkLast(Node<E> l) {
    // assert l == last && l != null;
// 拿出尾节点的值
    final E element = l.item;
    // 拿出尾节点的前一个节点
    final Node<E> prev = l.prev;
    // 赋值尾节点的值和尾节点的前一个节点为 null,帮助 GC 回收
    l.item = null;
    l.prev = null; // help GC
    // 原尾节点的前一个节点 prev 为新的尾节点
    last = prev;
    // 如果 prev 为 null,表明链表为空
    if (prev == null)
        first = null;
    else
    	// 链表为不空,设置新的尾节点的下一个节点为 null
        prev.next = null;
    // 大小和版本更改
    size--;
    modCount++;
    // 返回被删除节点的值
    return element;
}

从源码中我们可以了解到,链表结构的节点新增、删除都非常简单,仅仅把前后节点的指向修改而已,所以 LinkedList 新增和删除速度很快。

节点查询

链表查询某一个节点是比较慢的,需要遍历链表

/**
 * 根据链表索引位置查询节点 
 */
Node<E> node(int index) {
    // assert isElementIndex(index);
    // 如果 index 处于链表的前半部分,就从头开始查找,size >> 1 是 size/2 的意思
    if (index < (size >> 1)) {
        Node<E> x = first;
        // 循环到index的前一个node停止
        for (int i = 0; i < index; i++)
            x = x.next;
        return x;
    } 
    // 处于链表的后半部分,从尾部开始查找
    else {
        Node<E> x = last;
        // 循环到index的后一个node停止
        for (int i = size - 1; i > index; i--)
            x = x.prev;
        return x;
    }
}

从源码中我们发现,LinkedList 并没有采用从头循环到尾的做法,而是采取了简单二分法,首先看看 index 是在链表的前半部分,还是后半部分。如果是前半部分,就从头开始寻找,反之亦然。通过这种方式,使循环的次数至少降低了一半,提高了查找的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值