- 博客(10)
- 收藏
- 关注
原创 Kubernetes 中集成 Containerd 实战指南
本文深入剖析在 Kubernetes 中集成 Containerd 的原理、架构与工程实战,结合企业级环境部署与性能优化经验,帮助中高级技术人员快速上手并沉淀高质量技术资产。
2025-06-09 16:58:28
1220
原创 云原生之Docker, Containerd 与 CRI-O 全面对比
本文从底层运行原理、系统架构、模块协作、企业实战等角度,深入对比 Docker、Containerd 与 CRI-O 三大容器运行时方案,旨在为 Kubernetes 用户、DevOps 工程师、云平台研发人员提供高质量技术干货。
2025-06-05 17:31:15
975
原创 Containerd 深度解析与企业级落地
**摘要: Containerd作为云原生时代轻量高效的容器运行时,从Docker引擎中独立后发展为CNCF顶级项目。本文回顾其演进历程,剖析核心架构的插件化设计,包括存储层(Content/Snapshot)、元数据层(Metadata/GC)和运行时层(Runtime/CRI)。作为Kubernetes推荐的容器运行时,Containerd通过模块化设计实现高性能容器管理,适用于企业级DevOps与云平台建设。文章面向中高级技术人员,提供生产环境落地指导与调优思路。
2025-06-03 11:30:44
1359
原创 Manus AI 多语言手写识别技术分析
Manus AI通过引入多语言大模型、Transformer结构和风格自适应机制,显著提升了多语言手写识别性能。特别在应对中文等复杂字形和个性化笔迹差异方面,展现出强大泛化能力,推动手写识别迈向实用化与高精度。
2025-05-30 16:16:45
868
原创 工业级容器运行时的最佳选择:Containerd 深度解析与企业级落地实践
摘要: Containerd作为CNCF毕业项目,已成为工业级容器运行时的首选解决方案。本文深度解析其架构与特性:采用C/S架构与插件系统(如RunC、CRI),支持高效镜像/容器生命周期管理;提供YUM和二进制安装指南,并演示与Harbor私有仓库的集成。性能对比显示,Containerd在启动/停止耗时上优于Docker和CRI-O,且与Kubernetes无缝适配(1.20+默认替代Docker)。其优势包括轻量化、模块化、高性能及企业级支持,是云原生架构的核心基座。
2025-05-30 15:35:18
1149
原创 容器技术深度剖析:Linux 内核视角下的核心支撑机制
本文从Linux内核技术视角深入解析容器核心技术原理。作者系统梳理了1979年从chroot开始到2013年Docker爆发的容器技术演进历程,重点剖析了Namespace实现的多维度隔离机制(网络、进程、文件系统等)和Cgroups资源控制的核心功能(CPU、内存、I/O限制)。通过实战演示网络Namespace创建和Cgroups资源分配,揭示了容器轻量级虚拟化的底层实现逻辑。文章指出掌握内核级容器技术对架构师和开发者至关重要,并展望容器技术将向边缘计算、AI等领域延伸的发展趋势。
2025-05-29 15:47:59
963
原创 IT架构的蝶变:虚拟化通往云计算的桥梁
本文探讨了虚拟化与云计算技术的演进及融合实践。文章从企业IT资源浪费问题切入,系统介绍了虚拟化技术(包括KVM、Docker等)如何实现资源高效复用,以及云计算如何将虚拟化资源转化为标准化服务。重点分析了云计算的五大核心特性、三层技术架构及企业应用价值,并通过案例展示了虚拟化与云计算的协同效应。最后展望了云原生、AI与云计算结合的未来趋势。全文揭示了从物理设备到云服务的数字化转型路径,为IT架构优化提供了实践参考。
2025-05-28 15:40:37
1459
原创 如何使用 DeepSeek 帮助自己的工作?
本文来自一位拥有 8 年技术经验专家的真实工作经历,围绕代码生成、文档自动化、数据处理和知识库构建四大场景,详解如何借助 DeepSeek 提升开发效率,实现 AI 工具在实际工程中的高效落地。
2025-05-22 10:01:49
909
原创 AI超级助手开发入门:一文学会 MCP 协议 (Python & Java 实战)
聚焦 AI 超级助手开发,以 MCP 官方协议为基石,详细介绍规范文档,通过 Python(FastMCP 框架)与 Java(Spring AI Boot Starter) 两种语言,展示如何快速搭建可被 Claude、ChatGPT 等调用的 MCP 协议服务,助力开发者开启 AI 协作智能开发之旅。
2025-05-21 18:40:18
1083
原创 【Python 实战】100 TB 大文件自然数排序解决方案详解(附完整代码)
本文介绍了一种处理大规模数据排序的解决方案,适用于内存有限但数据量巨大的场景。具体步骤包括:首先查找文件中的最大值以确定分区范围,然后将大文件按数值区间分片,接着对每个小文件进行内存排序,最后通过多路归并(使用最小堆)将所有已排序的小文件合并为最终的有序结果。该方法的时间复杂度较低,适合处理超大规模数据。文章还提供了生成测试数据的脚本,并总结了外排序、分片、内存排序、多路归并等关键技术点。该方案不仅适用于1TB文件排序,还可扩展到更大的数据集和分布式系统中。
2025-05-16 15:14:53
939
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人