Matlab粒子群算法(PSO)优化程序——经典实例

粒子群算法( Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。鸟群中有个体和群体,个体和群体的信息是可以互通的。个体在随机搜寻食物的过程中,只要跟踪离食物最近的群体,就能最有效地找到食物。

1.一些基本概念
(1)粒子:优化问题的候选解,指鸟群中的一个个个体;
(2)位置:候选解所在的位置,即鸟群个体的位置;
(3)速度:粒子的移动速度;
(4)适应度:评价粒子优劣的值,一般为优化目标函数的数值;
(5)个体极值:单个粒子迄今为止找到的最佳位置,就鸟群觅食而言,是单个个体能够发现距离食物最近的个体;
(6)群体极值:所有粒子迄今为止找到的最佳位置。

2.大概流程及经典公式
根据这些概念,可以大概知道流程:1)初始粒子;2)计算适应度值;3)定义初始个体极值与群体极值;4)更新粒子位置与速度;5)更新个体极值和群体极值。
在实际问题的解决中,构建目标函数是最重要的,也是最难的。而粒子群算法中最经典的部分在于步骤4)(更新粒子位置与速度),其公式如下:

评论 42
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值