第一章 数组
704. 二分查找
题目
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9 输出: 4 解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2 输出: -1 解释: 2 不存在 nums 中因此返回 -1
提示:
-
你可以假设 nums 中的所有元素是不重复的。
-
n 将在 [1, 10000]之间。
-
nums 的每个元素都将在 [-9999, 9999]之间。
思路
-
使用二分查找,注意使用二分查找一定是:数组有序、无重复(重复返回下标就有问题);
-
判断区间为闭区间:【left,right】;使用left下标,和right下标进行区域划分
-
因为闭区间【left,right】,所以left==right有意义,所以判断:
while(left<=right)
-
使用(left+right)/2 = mid;中间下标的值和target进行比较;
-
target>nums[mid],则 left = mid+1;target<nums[mid],则 right= mid-1;
二分法第一种写法
写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。
第一种写法,我们定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要非常重要)。
区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:
while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
if (nums[middle] > target) right 要赋值为 middle - 1,因为当前这个nums[middle]一定不是target,那么接下来要查找的左区间结束下标位置就是 middle - 1
class Solution { public int search(int[] nums, int target) { int left = 0; int right = nums.length - 1; while (left <= right) { int mid = (left + right) / 2; if (target == nums[mid]) { return mid; } if (target > nums[mid]) { left = mid + 1; } if (target < nums[mid]) { right = mid - 1; } } return -1; } }二分法第二种写法
如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。
有如下两点:
while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
class Solution { public int search(int[] nums, int target) { int left = 0; int right = nums.length - 1; while (left < right) { //左闭右开,left == right 没有意义 int mid = (left + right) / 2; if (target == nums[mid]) { return mid; } if (target > nums[mid]) { left = mid + 1; } if (target < nums[mid]) { right = mid; //由于`右开`,所以right=mid,取不到mid,实际取到的是mid-1;一定要理解右开的情况。 } } return -1; } }
代码
class Solution {
public int search(int[] nums, int target) {
int left = 0;
int right = nums.length - 1;
while (left <= right) {
int mid = (left + right) / 2;
if (target == nums[mid]) {
return mid;
}
if (target > nums[mid]) {
left = mid + 1;
}
if (target < nums[mid]) {
right = mid - 1;
}
}
return -1;
}
}
27. 移除元素
题目
给你一个数组 nums 和一个值 val,你需要 原地 移除所有数值等于 val 的元素,并返回移除后数组的新长度。
不要使用额外的数组空间,你必须仅使用 O(1) 额外空间并原地修改输入数组。
元素的顺序可以改变。你不需要考虑数组中超出新长度后面的元素。
示例 1: 给定 nums = [3,2,2,3], val = 3, 函数应该返回新的长度 2, 并且 nums 中的前两个元素均为 2。 你不需要考虑数组中超出新长度后面的元素。
示例 2: 给定 nums = [0,1,2,2,3,0,4,2], val = 2, 函数应该返回新的长度 5, 并且 nums 中的前五个元素为 0, 1, 3, 0, 4。
你不需要考虑数组中超出新长度后面的元素。
思路
快慢指针:
慢指针记录不含val的实际新数组的下标
快指针往前走,找到相同val的就继续往前走,找到不同的val,先将nums[快指针]赋值给nums[慢指针],再快指针,慢指针同时往前走。
代码
class Solution {
public int removeElement(int[] nums, int val) {
//定义快慢指针,慢指针装不同的新数组,快指针向前找不同;
int slow = 0;
int fast = 0;
while (fast <= nums.length - 1) {
int current = nums[fast];
if (current != val) {
nums[slow] = nums[fast];
fast++;
slow++;
} else {
fast++;
}
}
return slow;
}
}