动态规划之斐波那契数

本文介绍了使用动态规划解决三种经典问题的方法:爬楼梯问题,打家劫舍问题(包括两种变体),以及信件错排问题。动态规划通过维护前后状态的关系,逐步求解最优解。对于爬楼梯,从第三阶开始,每一阶的解决方案是前两阶的和;打家劫舍问题中,小偷在不触发警报的情况下最大化盗窃金额;信件错排问题则计算错误装信方式的数量。这些问题展示了动态规划在解决递推关系问题中的强大能力。
摘要由CSDN通过智能技术生成

###70.爬楼梯 E

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。

第n阶台阶的路线等于n-1阶的路线数加上n-2阶的路线数,第一阶的路线数为1,第二阶路线数等于2,遍历求和即可

class Solution {
    public int climbStairs(int n) {
        if(n<=2){
            return n;
        }
        int pre1=1;
        int pre2=2;
        for(int i=3;i<=n;i++){
            int result=pre1+pre2;
            pre1=pre2;
            pre2=result;
        }return pre2;
    }
}

###198.打家劫舍 M

你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。
给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。

解法同上

class Solution {
    public int rob(int[] nums) {
        int pre1=0;
        int pre2=0;
        for(int i=0;i<nums.length;i++){
            int tem=Math.max(nums[i]+pre1,pre2);
            pre1=pre2;
            pre2=tem;

        }
        return pre2;
    }
}

###213.打家劫舍2 M

你是一个专业的小偷,计划偷窃沿街的房屋,每间房内都藏有一定的现金。这个地方所有的房屋都 围成一圈 ,这意味着第一个房屋和最后一个房屋是紧挨着的。同时,相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警 。
给定一个代表每个房屋存放金额的非负整数数组,计算你 在不触动警报装置的情况下 ,能够偷窃到的最高金额。

计算从0号房到n-1号房间抢劫金额与1号房到n号房的抢劫金额中最大的值,此值即为最值

class Solution {
    public int rob(int[] nums) {
        if(nums.length==0 || nums==null){
            return 0;
        }
        else if(nums.length==1){
            return nums[0];
        }
        else{
            return Math.max(subRob(nums,0,nums.length-2),subRob(nums,1,nums.length-1));

        }
        
    }

    public int subRob(int[] nums,int start,int end){
        int pre1=0;
        int pre2=0;
        for(int i=start;i<=end;i++){
            int tem=Math.max(nums[i]+pre1,pre2);
            pre1=pre2;
            pre2=tem;
        }
        return pre2;
    }
}

###信件错排

题目描述:有 N 个 信 和 信封,它们被打乱,求错误装信方式的数量。

定义一个数组 dp 存储错误方式数量,dp[i] 表示前 i 个信和信封的错误方式数量。假设第 i 个信装到第 j 个信封里面,而第 j 个信装到第 k 个信封里面。根据 i 和 k 是否相等,有两种情况:

  • i==k,交换 i 和 j 的信后,它们的信和信封在正确的位置,但是其余 i-2 封信有 dp[i-2] 种错误装信的方式。由于 j 有 i-1 种取值,因此共有 (i-1)*dp[i-2] 种错误装信方式。
  • i != k,交换 i 和 j 的信后,第 i 个信和信封在正确的位置,其余 i-1 封信有 dp[i-1] 种错误装信方式。由于 j 有 i-1 种取值,因此共有 (i-1)*dp[i-1] 种错误装信方式。
    综上所述,错误装信数量方式数量为:

###母牛生产

题目描述:假设农场中成熟的母牛每年都会生 1 头小母牛,并且永远不会死。第一年有 1 只小母牛,从第二年开始,母牛开始生小母牛。每只小母牛 3 年之后成熟又可以生小母牛。给定整数 N,求 N 年后牛的数量。

第 i 年成熟的牛的数量为:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值