java 判断某坐标 位置是否在多边形区域内 (是否在圆圈内)

1.判断某坐标 位置是否在多边形区域内

/**
 * 判断当前位置是否在多边形区域内
 * @param orderLocation 当前点
 * @param partitionLocation 区域顶点
 * @return
 */
public static boolean isInPolygon(String X,String Y,String partitionLocation){
    double p_x =Double.parseDouble(X);
    double p_y =Double.parseDouble(Y);
    Point2D.Double point = new Point2D.Double(p_x, p_y);

    List<Point2D.Double> pointList= new ArrayList<Point2D.Double>();
    String[] strList = partitionLocation.split("\\],");

    for (String str : strList){
        String[] points = str.split(",");
        double polygonPoint_x=Double.parseDouble(points[0]);
        double polygonPoint_y=Double.parseDouble(points[1]);
        Point2D.Double polygonPoint = new Point2D.Double(polygonPoint_x,polygonPoint_y);
        pointList.add(polygonPoint);
    }
    return IsPtInPoly(point,pointList);
}
/**
 * 判断点是否在多边形内,如果点位于多边形的顶点或边上,也算做点在多边形内,直接返回true
 * @param point 检测点
 * @param pts   多边形的顶点
 * @return      点在多边形内返回true,否则返回false
 */
public static boolean IsPtInPoly(Point2D.Double point, List<Point2D.Double> pts){
    int N = pts.size();
    boolean boundOrVertex = true; //如果点位于多边形的顶点或边上,也算做点在多边形内,直接返回true
    int intersectCount = 0;//cross points count of x
    double precision = 2e-10; //浮点类型计算时候与0比较时候的容差
    Point2D.Double p1, p2;//neighbour bound vertices
    Point2D.Double p = point; //当前点

    p1 = pts.get(0);//left vertex
    for(int i = 1; i <= N; ++i){//check all rays
        if(p.equals(p1)){
            return boundOrVertex;//p is an vertex
        }
        p2 = pts.get(i % N);
        if(p.x < Math.min(p1.x, p2.x) || p.x > Math.max(p1.x, p2.x)){
            p1 = p2;
            continue;
        }
        if(p.x > Math.min(p1.x, p2.x) && p.x < Math.max(p1.x, p2.x)){
            if(p.y <= Math.max(p1.y, p2.y)){
                if(p1.x == p2.x && p.y >= Math.min(p1.y, p2.y)){
                    return boundOrVertex;
                }
                if(p1.y == p2.y){
                    if(p1.y == p.y){
                        return boundOrVertex;
                    }else{//before ray
                        ++intersectCount;
                    }
                }else{
                    double xinters = (p.x - p1.x) * (p2.y - p1.y) / (p2.x - p1.x) + p1.y;
                    if(Math.abs(p.y - xinters) < precision){
                        return boundOrVertex;
                    }

                    if(p.y < xinters){
                        ++intersectCount;
                    }
                }
            }
        }else{
            if(p.x == p2.x && p.y <= p2.y){
                Point2D.Double p3 = pts.get((i+1) % N);
                if(p.x >= Math.min(p1.x, p3.x) && p.x <= Math.max(p1.x, p3.x)){
                    ++intersectCount;
                }else{
                    intersectCount += 2;
                }
            }
        }
        p1 = p2;
    }
    if(intersectCount % 2 == 0){//偶数在多边形外
        return false;
    } else { //奇数在多边形内
        return true;
    }
}
  1. 判断是否在多边形区域内

         /**
      * 判断是否在多边形区域内
      *
     * @param pointLon
      *            要判断的点的纵坐标 经
     * @param pointLat
    *            要判断的点的横坐标 纬
    *  @param lon
       *            区域各顶点的纵坐标数组
     	* @param lat
      *            区域各顶点的横坐标数组
       * @return
       */
       public static boolean isScope(double pointLon, double pointLat, double[] 	lon,
                                   double[] lat) {
     // 将要判断的横纵坐标组成一个点
     Point2D.Double point = new Point2D.Double(pointLon, pointLat);
     // 将区域各顶点的横纵坐标放到一个点集合里面
     List<Point2D.Double> pointList = new ArrayList<Point2D.Double>();
     double polygonPoint_x = 0.0, polygonPoint_y = 0.0;
     for (int i = 0; i < lon.length; i++) {
         polygonPoint_x = lon[i];
         polygonPoint_y = lat[i];
         Point2D.Double polygonPoint = new Point2D.Double(polygonPoint_x, polygonPoint_y);
         pointList.add(polygonPoint);
     }
         return check(point, pointList);
     }
     	 /**
      * 一个点是否在多边形内
      *
      * @param point
    *            要判断的点的横纵坐标
     * @param polygon
      *            组成的顶点坐标集合
     * @return
     */
     private static boolean check(Point2D.Double point, List<Point2D.Double> polygon) {
     java.awt.geom.GeneralPath peneralPath = new java.awt.geom.GeneralPath();
    
     Point2D.Double first = polygon.get(0);
     // 通过移动到指定坐标(以双精度指定),将一个点添加到路径中
     peneralPath.moveTo(first.x, first.y);
     polygon.remove(0);
     for (Point2D.Double d : polygon) {
         // 通过绘制一条从当前坐标到新指定坐标(以双精度指定)的直线,将一个点添加到路径中。
         peneralPath.lineTo(d.x, d.y);
     }
     // 将几何多边形封闭
     peneralPath.lineTo(first.x, first.y);
     peneralPath.closePath();
     // 测试指定的 Point2D 是否在 Shape 的边界内。
     return peneralPath.contains(point);
     }
    

    3.判断该地理坐标是否在最大范围区域内

     	 /**
     * 判断该地理坐标是否在最大范围区域内
      *
     * @param pointLon
     *            要判断的点的纵坐标
      * @param pointLat
      *            要判断的点的横坐标
       * @param lon
      *            指定区域的纵坐标组成的数组
     * @param lat
     *            指定区域的横坐标组成的数组
       * @return
     */
      private static boolean isInMaxArea(double pointLon, double pointLat, double[] lon,
                                    double[] lat) {
    
     // 获取区域横纵坐标最大值和最小值
     double temp = 0.0;
     for (int i = 0; i < lon.length; i++) {
         for (int j = 0; j < lon.length - i - 1; j++) {
             if (lon[j] > lon[j + 1]) {
                 temp = lon[j];
                 lon[j] = lon[j + 1];
                 lon[j + 1] = temp;
             }
         }
     }
     for (int i = 0; i < lat.length; i++) {
         for (int j = 0; j < lat.length - i - 1; j++) {
             if (lat[j] > lat[j + 1]) {
                 temp = lat[j];
                 lat[j] = lat[j + 1];
                 lat[j + 1] = temp;
             }
         }
     }
    
     // 如果在最值组成的区域外,那肯定不在重点区域内
     return (pointLon < lon[0] || pointLon > lon[lon.length - 1] || pointLat < lat[0]
             || pointLat > lat[lat.length - 1]);
     }
        /**
        * 判断坐标是否在重点区域内
         *
       * @param pointLon
    *            要判断的点的纵坐标
    * @param pointLat
      *            要判断的点的横坐标
      * @param lon
      *            指定区域的纵坐标组成的数组
      * @param lat
      *            指定区域的横坐标组成的数组
      * @return
      */
      private static boolean isInAccurateArea(double pointLon, double pointLat, double[] lon,
                                         double[] lat) {
     // 代表有几个点
     int vertexNum = lon.length;
     boolean result = false;
    
     for (int i = 0, j = vertexNum - 1; i < vertexNum; j = i++) {
         // 满足条件,与多边形相交一次,result布尔值取反一次,奇数个则在区域内
         if ((lon[i] > pointLon) != (lon[j] > pointLon)
                 && (pointLat < (lat[j] - lat[i]) * (pointLon - lon[i]) / (lon[j] - lon[i])
                 + lat[i])) {
             result = !result;
         }
     }
     return result;
      }
    
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值