自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(326)
  • 收藏
  • 关注

原创 tableau 对比销售额分析(利用参数、EXCLUDE)

目的:找出与选定类别的差异步骤:首先,必须隔离选定类别的销售额。然后,需要使用 EXCLUDE 表达式在所有其他类别中重复该值。之后,便可轻松了解每个类别的销售额与其他类别的差异。因为类别是不固定的,可能是所有类别中的任意一个,所以需要设置参数:鼠标放在Category上,右键创建参数创建计算字段:[Category] = [参数].[Category],名称为Selected Category创建计算字段:IF [Category] = [参数].[Category] THEN S

2020-10-01 21:56:50 1603

原创 tableau 总额百分比

每个国家/地区的收入对全球销售额有何贡献? 如果我们按照贡献百分比着色,即可看出美国对全球销售收入的贡献最大。但是,我们可能想重点关注欧盟等在绝对值上相对贡献较小的市场。如果不采用详细级别表达式,对某市场进行筛选会导致总额百分比的重新计算,从而显示每个国家/地区对其市场的贡献。利用简单的详细级别表达式,我们可对某市场进行筛选,同时仍可衡量全球贡献。先看图吧,大概能懂什么意思了,就是求百分比,以后可以套用。这里的第二列:SUM([{SUM(Sales)}]),第三列:SUM([Sales]).

2020-10-01 17:18:12 761

原创 行业查询报告

2021-01-06 17:18:52 17

原创 Hive:日期函数

函数名称:date_add用途:日期加减计算格式:datetime date_add(datetime,bigint)参数说明:select date_add('2017-09-15',1); 2017-09-16函数名称:datediff用途:计算两个日期差值格式:bigint datediff(datetime,datetime)参数说明:select datediff('2017-09-15','2017-09-01')函数名称:from_unixtime用途:..

2020-12-30 00:01:13 34

原创 Hive:聚合函数

函数名称:stddev用途:计算总体标准差格式:T stddev(T,T,T,...)函数名称:stddev_samp用途:计算样本标准差格式:T stddev_samp(T,T,T,...)函数名称:variance用途:返回组内某个数字列的方差接口格式:DOUBLE variance(column name)函数名称:var_pop用途:返回组内某个数字列的方差接口格式:DOUBLE var_pop(column name)函数名称:var_samp..

2020-12-30 00:00:31 66

原创 Hive:数学函数

函数名称:ceil用途:返回不小于输入值value的最小整数格式:bigint ceil(double) bigint ceil(decimal)函数名称:conv用途:进制转换函数格式:string conv(string,bigint,bigint)函数名称:floor用途:向下取整,返回比number小的整数值格式:bigint floor(double) bigint floor(decimal)函数名称:exp用途:指数函数格式:double exp..

2020-12-29 23:59:35 41

原创 Hive:字符串函数

函数名称:concat用途:连接字符串格式:string concat(string,string)函数名称:get_json_object用途:根据指定的json路径从json字符串中提取json对象,并返回提取的json对象的json字符串。如果输入json字符串无效,它将返回null。注意:json路径只能有字符[0-9a-z_],即,没有大写或特殊字符。同样,键*不能以数字开头。*这是由于对Hive列名的限制。接口格式:string get_json_object(s...

2020-12-29 23:58:13 17

原创 电商常见指标

对于业务型数据分析师,对于各种指标的理解一定要准确,因为这涉及到取数和后面的分析。对于电商,常见的指标整理如下: 指标名称 指标含义 商品销量 支付成功且当天没有取消 客件数 客件数=商品销量/用户数 GMV 等价于应收金额。常用的等式:实收金额=GMV-折扣 商品毛利 商品毛利=GMV-供应商成本(这里不是实收金额,而是GMV,说明毛利不把商家自己的折扣、券考虑进去,这样得到的结果就是商品给商家带来.

2020-11-07 20:38:18 58

原创 生成总行数的数据

一般的,如果我们想统计频数,可以用select count(*) from table但是,如果想生成全是频数的一列,可以用下面的语句:select sum(1) over(partition by null) as rn11from table

2020-10-16 10:24:45 16

原创 Hive分析窗口函数(三) CUME_DIST,PERCENT_RANK

参考网址:Hive分析窗口函数(三) CUME_DIST,PERCENT_RANK – lxw的大数据田地,自己试着在mysql里做了一遍。数据准备:表salaryCUME_DISTCUME_DIST 小于等于当前值的行数/分组内总行数比如,统计小于等于当前薪水的人数,所占总人数的比例select dept,userid,sal,cume_dist() over(order by sal) as rn1,cume_dist() over(partition by dept o.

2020-10-16 10:21:39 52

原创 MySQL中TIMESTAMPDIFF和DATEDIFF函数的区别

下面说的前面减去后面,或者后面减去前面的意思是这样操作,结果是正数,如果将两个时间换个位置,将得到一个负数的结果。简记一下:D--大的前(大的时间在前)T---大的后(大的时间在后)1、TIMESTAMPDIFF:后面的时间减去前面的时间SELECT-- 时间相差不到24小时不算一天 timestampdiff(DAY,'2020-02-25 00:00:00','2020-02-26') day1, -- 1timestampdiff(DAY,'2020-02-25 00:0

2020-10-16 09:42:38 41

原创 SQL知识体系

2020-10-14 22:47:05 35

原创 sql分任意区间统计频数

用excel生成随机数,然后导入mysqlselect count(case when scores>=90 and scores<=100 then id end) as "[90,100]",count(case when scores>=80 and scores<=89 then id end) as "[80,89]",count(case when scores>=70 and scores<=79 then id end) as "[70,

2020-10-14 22:05:30 46

原创 Tableau 使用背景图像

在您的视图中使用背景图像 - Tableau

2020-10-10 13:42:23 251

原创 tableau画各种图

堆积柱状图对总和记录数处理:快速表计算--合计百分比,计算依据--表(向下),可以得到下图:频数直方图先创建数据桶,则数据桶自动为离散,如果是先拉进去再创建数据桶,则数据桶为连续 。数据明显呈现左偏分布,对于评分较高的记录,我们也可以再一步进行细分,从而观察数据在更小区间的分布。创建字段:评分(高级分组)IF [评分]<4 THEN '1.5-4'ELSEIF [评分]>=4 AND [评分]<4.2 THEN '4.0-4.1'ELSEIF [评.

2020-10-09 20:55:26 177 2

原创 tableau 创建集、使用集

集与组有许多相同之处,他们的作用都是改变原有的数据展现形式。但又有所不同。集的作用更加灵活,它更像是过滤器,过滤出我们所需要展示的部分。我们在做数据展示的时候有的时候会格外关注一些特定维度的数据。我们当然可以通过过滤器来显示我们想要看到的数据,但是这也就意味着每一次我们都需要进行许多重复的步骤:拖拽并点选指定维度。这时使用固定集,可以减少许多重复性工作,大大提高我们的工作效率。学习创建集 - Tableau,大概可以了解集的一些设置。有两种类型的集:动态集和固定集。动态集的成员会在基础数

2020-10-07 19:40:03 148

原创 tableau 进行会员留存分析

1.数据源数据进行简单的拆分,把会员创建日期提取出来。创建新的字段:距离创建会员的月份数:datediff('month',[会员创建日期(拆分)],[销售日期])2.图表分析 我们可以看到当月注册会员,当月消费的人数是最多的,随着时间的推移,基本趋于稳定,也就是留存下来的会员数量变化幅度不大。 如果有消费记录,我们则认为会员没有流失,在距离注册时间过去7个月的时候,我们可以看到有一个留存提升的情况,可能是由于某种产品的使用周期性,让...

2020-10-07 11:09:42 152

原创 tableau 创建数据桶

对于分组观察数据的频数,从而了解数据在不同区间的分布,我们可以创建数据桶。创建分为按照建议的区间长度进行划分,也可以自行设置参数。这里主要讲解自行设置参数,将最大值,最小值,步长设置好。对于频数的大小,一直不是很清楚,所以自己创建一个小数据集,研究了一下。tableau应该是按照左开右闭的规则统计频数的。数据源:1.5 2 3 4 5 6.5 7 7.1 9 10区间划分含义:区间 包含的数字 频数 [1,2) 1.5 1 [2,3) ...

2020-10-07 09:45:00 374 2

原创 tableau进行价格-促销分析

1.数据源2.数据清洗创建计算字段:用券比例:[用券数]/[获券数]用券数不能比获券数多,所以这里用券比例要小于等于1。3.图表分析由已有字段创建数据桶

2020-10-06 23:24:54 125

原创 tableau进行客户RFM分析

原始数据及twbx:链接:https://pan.baidu.com/s/1ZlN4ixsUm60NaenDkiJx9g提取码:5hrs1.数据预处理数据源:创建字段:购买点生命周期(日):IIF(DATEDIFF('day',[会员创建日期],[销售日期])>=0,DATEDIFF('day',[会员创建日期],[销售日期]),NULL)最后购买点生命周期(日):{FIXED [UseId]:MAX([购买点生命周期(日)])}2.图表分析...

2020-10-06 20:54:48 123

原创 tableau进行会员分群

1.数据清洗点击每个字段的倒三角,然后点击描述,可以大致观察数据的情况,当点击到消费金额时,发现金额出现负值,如下图:所以需要进行数据清洗:2.数据标准化3.图表分析创建计算字段:把会员ID拖入维度分群:选择分群用到的变量和分群的个数。(原理:k均值聚类)统一强制y截距为0:把群集拖到维度,以便后面复用。下面的图就是复用了...

2020-10-06 20:03:37 49

原创 关于直播、电商

如何衡量一场直播带货的好坏?对于直播带货,相当于短视频+电商的一个融合模式。短视频行业,我们可以用AAARR模型来构建短视频的业务指标体系,如果单纯地从视频端,忽略电商端对成交的影响,我们仍然可以选择用AAARR模型。对直播带货的看法认知:是一种依靠名人效应聚集观众,然后进行现场使用推销,当然,也有非名人带货,均有现场代入感,能让观众直接感受商品质量的好坏,从而让观众产生购买欲望的线上方式。优点:1.对客户,免除人们逛商场的麻烦的同时,对商品依然有很好的了解;2.对商家,直播需.

2020-10-06 11:13:28 65

转载 辛普森悖论

辛普森悖论_绝望的乐园-CSDN博客

2020-10-05 20:58:58 24

原创 sql的with子句

有一张学生表student,包括学生id,姓名,年龄,班级,分数字段。--用with子句得到成年且成绩及格的学生名单with adult as (select stu_idfrom studentwhere age >=18),pass_stu as (select stu_idfrom studentwhere grade >=60)select a.stu_id, age, gradefrom student as ajoin adult as b .

2020-10-02 20:21:40 18

原创 sql 字符串函数

字符串函数:substring(string,start,length) 截取字符串string,从start开始的length个字符,类似excel的mid left(string,length) 截取字符串string,从最左边开始的length个字符,类似excel的left right(string,length) 截取字符串string,从最右边开始的length个字符,类似excel的right instr(string1 , string2 [,start..

2020-10-02 20:01:07 16

原创 sql中any,some,in,not in

准备两个表:T1(2,3),T2(1,2,3,4)all:在T2表中查询比T1表中所有id都大的id;select * from T2 where id>all (select id from T1)any:在T2表中查询比T1表中任意一个id大的id;只需大于一个就可以select * from T2 where id>any(select id from T1)any,some是一样的结果,即父查询中的结果集大于子查询中任意一个结果集中的值,则为...

2020-10-02 19:05:32 26

转载 详细级别表达式: INCLUDE

INCLUDE 详细级别表达式除了视图中的任何维度之外,INCLUDE 详细级别表达式还将使用指定的维度计算值。如果您想要在数据库中以精细详细级别计算,然后重新聚合并在视图中以粗略详细级别显示,则 INCLUDE 详细级别表达式可能非常有用。当您在视图中添加或移除维度时,基于 INCLUDE 详细级别表达式的字段将随之更改。示例 1以下 INCLUDE 详细级别表达式计算每个客户的总销售额:{ INCLUDE[Customer Name] : SUM([Sales]) }将该计算放.

2020-10-02 14:00:30 31

原创 tableau按年、月、日查看变化趋势

目的:查看利润随时间的变化趋势,想要了解每个月或每年的盈利天数,尤其是在我们想了解季节影响时。先创建字段:按日期聚合利润的数量。对每日利润的大小按一定标准进行划分,分为三组:每日盈利状况:利用Daily Profit KPI分组后的图,颜色也分为三组,但数值是一样的。当拖入两个Order Date时,会按照年、季度依次自动调整,需要将quarter改为month,计数的:COUNTD([Order Date])这张图能够看到某年某月的三种利润分布的天数,也能看到某一年连.

2020-10-01 16:40:31 174

原创 认识添加表计算

尽可能用例子让自己明白,先码上一个例子,后续有的话再加上。数据介绍:这是一份销售数据,用户分别是在2011,2012,2013,2014开始消费的,2011年的用户在2011,2012,2013,2014都有消费记录,而2014年的用户只在2014年有消费记录,从而构成了下表,查看表数据如下:图中直接显示了销售额,同一颜色的是某一年获取的用户在不同年的消费额。如果想研究合作时间越长的用户对销售额的贡献是否越大,我们用百分比就更好衡量。此时我们添加表计算,设置为合计百分比。接着更改纵轴:

2020-10-01 12:22:54 23

原创 Tableau 日期函数

整理了下期函数,方便查阅和复习。Tableau 提供多种日期函数。许多日期函数使用date_part,它是一个常量字符串参数。您可以使用的有效date_part值为:DATE_PART 值 'year' 四位数年份 'quarter' 1-4 'month' 1-12 或 "January"、"February" 等 'dayofyear' 一年中的第几天;1 月 1 日为 1、2 月 1 日为 32,依此类推 'day' 1-31 ...

2020-10-01 11:53:09 171

转载 常用函数整理

Tableau 我常用函数整理 - 码农教程

2020-10-01 11:19:09 840

原创 详细级别表达式:FIXED

对于销售数据,我们一般有客户ID,订单ID,订单Date等等信息。如果我们要统计每日订单数、每个客户订单数都比较简单(利用记录数即可)。但是统计订单个数的分布,即不同订单数分别有多少人,这种图表可以分析人们的购买力、或者人们购物的目的性是否强烈。不同客户的总订单数:下面是怎么画出不同订单数分别有多少人的过程:利用详细级别表达式:{ FIXED [Customer ID] : COUNTD([Order ID]) },创建新的字段名称为:Number of Orders per Custome

2020-10-01 11:01:01 62

原创 tableau给图表添加注释

标记点区鼠标箭头放在图表上,右键"添加注释",会出现三种选择:标记,点,区域。这里标记是暗的,其实只有当鼠标箭头放在某一个具体列位置时,才会显示可用。三种注释方式的特点:标记:带箭头,可拖动,主动显示标签信息点:带箭头,可拖动,这个不知道显示的是什么信息区域:不带箭头总结:对于柱状图某列或者折线图某个点建议用标记和点,对于整个图的注释建议用区域。...

2020-10-01 10:25:14 294

原创 sql分组求中位数

Employee表包含所有员工。Employee表有三列:员工Id,公司名和薪水。Create table If Not Exists Employee (Id int, Company varchar(255), Salary int)Truncate table Employeeinsert into Employee (Id, Company, Salary) values ('1', 'A', '2341')insert into Employee (Id, Company, Sa...

2020-09-30 13:42:34 149

原创 关于max()/min()和group by 的坑

请编写一个 SQL 查询,描述每一个玩家首次登陆的设备名称select player_id,device_id,min(event_date) from Activitygroup by player_id上面的运行结果是有问题的,player_id和min(event_date)是没有错误的,因为一个用于group by,一个在聚合函数min中,而device_id没有进行任何操作。你会发现数据对不上,第一行的device_id应该是1,而不是2。所以在不涉及player_i...

2020-09-30 11:15:40 84

原创  197. 上升的温度

Create table If Not Exists Weather (Id int, RecordDate date, Temperature int)Truncate table Weatherinsert into Weather (Id, RecordDate, Temperature) values ('1', '2015-01-01', '10')insert into Weather (Id, RecordDate, Temperature) values ('2', '2015-...

2020-09-29 21:39:34 17

原创 184. 部门工资最高的员工

Create table If Not Exists Employee (Id int, Name varchar(255), Salary int, DepartmentId int)Create table If Not Exists Department (Id int, Name varchar(255))Truncate table Employeeinsert into Employee (Id, Name, Salary, DepartmentId) values ('1', ...

2020-09-29 20:55:32 14

原创 sql中的窗口函数:lead,lag

偶然间发现两个非常好用的函数:lead,lag,它们可以将数据进行位移,位移之后用来计算环比应该是很容易了。因为涉及到位移,所以会有数据会被挪位而消失。 lag :向前,形象的理解就是把数据从上向下推,上端出现空格 lead :向后,形象的理解就是把数据从下向上推,下端出现空格 lag 和lead 有三个参数,第一个参数是列名,第二个参数是偏移的offset,第三个参数是 超出记录窗口时的默认值。举例如下:原始数据表:items运用lag函数:select *,lag.

2020-09-29 11:29:57 409

转载 pandas_demo

Table of Contents1  读取MySQL表格数据2  数据处理2.1  表格拼接2.2  去重2.3  异常值处理2.4  空值处理2.4.1  检查缺失值(isnull和notnull)2.4.2  填充空值2.4.3  删除全为空的列2.4.4  删除有空值的行2.5  

2020-09-29 10:47:26 20

原创 tableau

学习链接:所有函数(分类) - Tableau

2020-09-26 18:59:37 50

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除