11.盛最多水的容器

给定 n 个非负整数 a1,a2,…,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。
在这里插入图片描述
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。

示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49

分析
解法1:暴力求解 时间复杂度 O(n^2) 超出时间限制

解法2:贪心算法 用双指针

  • 容器盛水量取决于 1.左右两端较小的高 2.长度
  • 从最大的长度入手 盛水量取决于较小的高
  • 移动较小的高 虽然长度变小 但高度变大可能会带来更高的盛水量

思考

  • 双指针 可以去除过多循环
class Solution:
    def maxArea(self, height: List[int]) -> int:
        
        n = len(height)
        
        max_water = 0
        
        # 双指针 分别指向容器的左右两端
        left = 0
        right = n - 1
        
        while left < right:
            
            # 容器高度
            min_height = min(height[left], height[right])
            # 容器宽度
            length = right - left
            # 容器盛水量
            water = length * min_height
            
            if water > max_water:
                max_water = water
                
            # 更新 高度较小的那一端指针. 如果更新高度较大的指针 则容器盛水量只会变小 不会变大
            if height[left] < height[right]:
                left += 1
            # 若高度相等 更新哪一侧都是一样的
            else:
                right -= 1
                
        return max_water
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值