题目描述


题目分析
目标矩阵的行列数相同,均为n。此题是n×n型矩阵的旋转,重点把握好旋转前后行、列索引编号的变化。通过对旋转前后的索引编号进行分析,从而找出旋转后的变化关系即可。
解法一:辅助数组
当旋转第一行时,
(0,0) => (0,3)
(0,1) => (1,3)
(0,2) => (2,3)
(0,3) => (3,3)

当旋转第二行时,
(1,0) => (0,2)
(1,1) => (1,2)
(1,2) => (2,2)
(1,3) => (3,2)

设行索引编号为x,列索引编号为y,通过观察可发现,经过旋转后的列索引变为n - x - 1,行索引变为y。
因此可根据上述关系可知,旋转前matrix[x][y]位置在旋转后的新位置便变为matrix[y][n-x-1]
参考文章:旋转矩阵
代码实现
class Solution {
public:
void rotate(vector<vextor<int>>& matrix){
int n = matrix.size();
auto matrix_new = matrix; // 这里的 = 拷贝值,将拷贝的值传给一个新的数组
for(int i = 0; i < n; i++){
for(int j = 0; j < n; j++){
matrix_new[j][n - i

博客围绕n×n型矩阵旋转问题展开,介绍两种C++解法。解法一用辅助数组,通过分析旋转前后行列索引变化确定新位置;解法二用翻转替代旋转,先按对角线翻转,再按中位线翻转得到目标矩阵,两种解法时间复杂度均为O(n2),空间复杂度为O(1)。
最低0.47元/天 解锁文章
661





