24、【数组】旋转矩阵(C++版)

博客围绕n×n型矩阵旋转问题展开,介绍两种C++解法。解法一用辅助数组,通过分析旋转前后行列索引变化确定新位置;解法二用翻转替代旋转,先按对角线翻转,再按中位线翻转得到目标矩阵,两种解法时间复杂度均为O(n2),空间复杂度为O(1)。

题目描述

在这里插入图片描述
在这里插入图片描述

题目分析

目标矩阵的行列数相同,均为n。此题是n×n型矩阵的旋转,重点把握好旋转前后行、列索引编号的变化。通过对旋转前后的索引编号进行分析,从而找出旋转后的变化关系即可。

解法一:辅助数组

当旋转第一行时,
(0,0) => (0,3)
(0,1) => (1,3)
(0,2) => (2,3)
(0,3) => (3,3)
在这里插入图片描述

当旋转第二行时,
(1,0) => (0,2)
(1,1) => (1,2)
(1,2) => (2,2)
(1,3) => (3,2)
在这里插入图片描述

设行索引编号为x,列索引编号为y,通过观察可发现,经过旋转后的列索引变为n - x - 1,行索引变为y。

因此可根据上述关系可知,旋转前matrix[x][y]位置在旋转后的新位置便变为matrix[y][n-x-1]

参考文章:旋转矩阵
代码实现

class Solution {
public:
	void rotate(vector<vextor<int>>& matrix){
		int n = matrix.size();
		auto matrix_new = matrix;			// 这里的 = 拷贝值,将拷贝的值传给一个新的数组
		for(int i = 0; i < n; i++){
			for(int j = 0; j < n; j++){
				matrix_new[j][n - i
评论 3
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰阳星宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值