自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1)
  • 资源 (1)
  • 收藏
  • 关注

原创 2020-11-08

高性能智能计算上机实验报告 并行算法在卷积神经网络的应用 摘要:随着网络数据量的暴增与计算机算力的发展,近些年来深度学习领域取得的重大的发展,许多传统机器学习领域无法解决的问题都在深度学习中取得突破。深度卷积神经网络是深度学习中的一中网络结构,与传统的全连接网络相比,采用卷积实现局部连接和权值共享,能够有效的解决参数爆炸的问题,广泛的被应用在计算机视觉领域。然而由于参数训练过程计算量太大,滑动卷积矩阵乘计算非常的费时,完成一个卷积神经网络模型的训练往往需要消耗大量的时间,针对这个问题,...

2020-11-08 23:06:56 17

基于CUDA的并行卷积运算|kernel.zip

随着网络数据量的暴增与计算机算力的发展,近些年来深度学习领域取得的重大的发展,许多传统机器学习领域无法解决的问题都在深度学习中取得突破。深度卷积神经网络是深度学习中的一中网络结构,与传统的全连接网络相比,采用卷积实现局部连接和权值共享,能够有效的解决参数爆炸的问题,广泛的被应用在计算机视觉领域。然而由于参数训练过程计算量太大,滑动卷积矩阵乘计算非常的费时,完成一个卷积神经网络模型的训练往往需要消耗大量的时间,针对这个问题,本次实验将构建一个基于CUDA架构的编程环境,采用CUDA/C++编程实现二维的卷积的并行计算,通过对比GPU实现与CPU实现,调整不同参数,分析并行技术对程序性能的提升效果

2020-11-08

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除