N (1 ≤ N ≤ 100) cows, conveniently numbered 1..N, are participating in a programming contest. As we all know, some cows code better than others. Each cow has a certain constant skill rating that is unique among the competitors.
The contest is conducted in several head-to-head rounds, each between two cows. If cow A has a greater skill level than cow B (1 ≤ A ≤ N; 1 ≤ B ≤ N; A ≠ B), then cow A will always beat cow B.
Farmer John is trying to rank the cows by skill level. Given a list the results of M(1 ≤ M ≤ 4,500) two-cow rounds, determine the number of cows whose ranks can be precisely determined from the results. It is guaranteed that the results of the rounds will not be contradictory.
* Line 1: Two space-separated integers: N and M
* Lines 2..M+1: Each line contains two space-separated integers that describe the competitors and results (the first integer, A, is the winner) of a single round of competition: A and B
* Line 1: A single integer representing the number of cows whose ranks can be determined
5 5 4 3 4 2 3 2 1 2 2 5Sample Output
2
方法:用floyd求出任意两点之间的最短路
注意点:1、最后要check两点之间是否有路
2、此图为有向图
故1、应考虑两个方向—> i比j小或i比j大 —> if (d[i][j] != INF || d[j][i] != EOF)
ac代码:
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#define INF 1e9 +7
using namespace std;
int d[111][111];
int minn(int a,int b) {return a > b ? b : a; }
int main()
{
int N,M;
while(scanf("%d%d",&N,&M) != EOF)
{
int x,y;
for(int i =1;i<=N;i++)
{
for(int j =1;j<=N;j++)
d[i][j] = INF;
d[i][i] = 0;
}
for(int i = 0;i<M;i++)
{
scanf("%d%d",&x,&y);
d[x][y] = 1;
}
for(int k = 1;k<= N;k++)
{
for(int i = 1;i<=N;i++)
{
for(int j =1; j <=N;j++)
d[i][j] = minn(d[i][j],d[i][k] + d[k][j]);
}
}
int ans = 0;
for(int i = 1;i<=N;i++)
{
int t = 1;
for(int j =1;j<=N;j++)
{
if(d[i][j] == INF && d[j][i] == INF)
t = 0;
}
if(t)
ans ++;
}
printf("%d\n",ans);
}
}