数据结构&算法
vector6_
linux c++/java
展开
-
滑动窗口最大值
滑动窗口最大值给你一个整数数组 nums,有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。返回 滑动窗口中的最大值 。示例 1:输入:nums = [1,3,-1,-3,5,3,6,7], k = 3输出:[3,3,5,5,6,7]解释:滑动窗口的位置 最大值[1 3 -1] -3 5 3 6 7 31 [3 -1 -3] 5 3 6 7原创 2022-04-30 14:15:05 · 104 阅读 · 0 评论 -
单调栈——每日温度
每日温度请根据每日 气温 列表 temperatures ,请计算在每一天需要等几天才会有更高的温度。如果气温在这之后都不会升高,请在该位置用 0 来代替。示例 1:输入: temperatures = [73,74,75,71,69,72,76,73]输出: [1,1,4,2,1,1,0,0]class Solution {public: vector<int> dailyTemperatures(vector<int>& temperatures原创 2022-04-30 14:14:38 · 566 阅读 · 0 评论 -
下一个更大元素II
下一个更大元素II给定一个循环数组(最后一个元素的下一个元素是数组的第一个元素),输出每个元素的下一个更大元素。数字 x 的下一个更大的元素是按数组遍历顺序,这个数字之后的第一个比它更大的数,这意味着你应该循环地搜索它的下一个更大的数。如果不存在,则输出 -1。示例 1:输入: [1,2,1]输出: [2,-1,2]解释: 第一个 1 的下一个更大的数是 2;数字 2 找不到下一个更大的数;第二个 1 的下一个最大的数需要循环搜索,结果也是 2。与下一个更大元素相似,现在给定的数组是个环原创 2022-04-30 14:13:39 · 100 阅读 · 0 评论 -
下一个更大元素
下一个更大元素nums1 中数字 x 的 下一个更大元素 是指 x 在 nums2 中对应位置 右侧 的 第一个 比 x 大的元素。给你两个 没有重复元素 的数组 nums1 和 nums2 ,下标从 0 开始计数,其中nums1 是 nums2 的子集。对于每个 0 <= i < nums1.length ,找出满足 nums1[i] == nums2[j] 的下标 j ,并且在 nums2 确定 nums2[j] 的 下一个更大元素 。如果不存在下一个更大元素,那么本次查询的答案是原创 2022-04-30 14:12:53 · 317 阅读 · 0 评论 -
数据流的中位数
数据流的中位数中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。例如,[2,3,4] 的中位数是 3[2,3] 的中位数是 (2 + 3) / 2 = 2.5设计一个支持以下两种操作的数据结构:void addNum(int num) - 从数据流中添加一个整数到数据结构中。double findMedian() - 返回目前所有元素的中位数。示例:addNum(1)addNum(2)findMedian() -> 1.5addNum(3) fin原创 2022-04-30 14:12:12 · 154 阅读 · 0 评论 -
最大频率栈
最大频率栈设计一个类似堆栈的数据结构,将元素推入堆栈,并从堆栈中弹出出现频率最高的元素。实现 FreqStack 类:FreqStack() 构造一个空的堆栈。void push(int val) 将一个整数 val 压入栈顶。int pop() 删除并返回堆栈中出现频率最高的元素。如果出现频率最高的元素不只一个,则移除并返回最接近栈顶的元素。class FreqStack {public: FreqStack() { } void p原创 2022-04-30 14:11:41 · 307 阅读 · 0 评论 -
数据结构&算法——二叉搜索树
数据结构&算法——二叉搜索树BST 的特性:1、对于 BST 的每一个节点 node,左子树节点的值都比 node 的值要小,右子树节点的值都比 node 的值大。2、对于 BST 的每一个节点 node,它的左侧子树和右侧子树都是 BST。整体上BST也是基于递归的思想和方法,但额外的特性是中序遍历即有序二叉搜索树中第K小的元素给定一个二叉搜索树的根节点 root ,和一个整数 k ,请你设计一个算法查找其中第 k 个最小元素(从 1 开始计数)。/** * Definitio原创 2022-04-30 11:09:57 · 462 阅读 · 0 评论 -
数据结构&算法——二叉树
数据结构&算法——二叉树很多经典算法都是二叉树的变形。比如说快速排序就是个二叉树的前序遍历,归并排序就是个二叉树的后序遍历。快速排序的逻辑是,若要对 nums[lo..hi] 进行排序,我们先找一个分界点 p,通过交换元素使得 nums[lo..p-1] 都小于等于 nums[p],且 nums[p+1..hi] 都大于 nums[p],然后递归地去 nums[lo..p-1] 和 nums[p+1..hi] 中寻找新的分界点,最后整个数组就被排序了。快速排序的算法框架:void sort(原创 2022-04-30 11:09:24 · 249 阅读 · 0 评论