电位移矢量法向向量连续性证明

本文详细证明了电位移矢量D在法向方向上的连续性,通过圆柱体极限过程,结合电荷面密度ρs,得出n⋅(D1−D2)=ρs的结论,展示了静电场中一个重要物理性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电位移矢量法向向量连续性证明

证明:

n ⋅ ( D 1 − D 2 ) = ρ s \bm{n}\cdot(\bm{D}_{1}-\bm{D}_{2})=\bm{\rho}_{s} n(D1D2)=ρs在这里插入图片描述
如图所示,取一圆柱,当上下面无限接近于分界面时,圆柱侧面积 S 3 → 0 S_{3}\rightarrow0 S30

  • n \bm{n} n为单位法向量
  • D 1 \bm{D}_{1} D1
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值