将逐帧图片生成mp4格式视频——pyhton实现

import cv2
img = cv2.imread('/media/lc/LENOVO_USB_HDD/MOT/SimpleTrack/SimpleTrack/res_img/s0.png')
imgInfo = img.shape
size = (imgInfo[1],imgInfo[0])
print(size)
# 参数:1 file name 2 编码器 3 帧率 4 size
videoWrite = cv2.VideoWriter('mot.mp4',cv2.VideoWriter_fourcc(*'mp4v'),10,size)# 写入对象

# 0-197张图片
for i in range(0,198):
    fileName = '/media/lc/LENOVO_USB_HDD/MOT/SimpleTrack/SimpleTrack/res_img/s'+str(i)+'.png'
    img = cv2.imread(fileName)
    videoWrite.write(img) # 将图片写入视频
videoWrite.release()
print('end!')


# import cv2
# import glob
# img_array = []
# for filename in glob.glob('/media/lc/LENOVO_USB_HDD/MOT/SimpleTrack/SimpleTrack/res_img/*.png'):
#     # 需要将路径更改为自己存储图片的路径
#     img = cv2.imread(filename)
#     height, width, layers = img.shape
#     size = (width, height)
#     img_array.append(img)
# out = cv2.VideoWriter('mot.avi', cv2.VideoWriter_fourcc(*'DIVX'), 15, size)
# for i in range(len(img_array)):
#     out.write(img_array[i])
# out.release()

********************************************文件名补0操作***********************************************

import cv2
# img = cv2.imread('/media/lc/LENOVO_USB_HDD/MOT/SimpleTrack/SimpleTrack/res_img/s0.png')
img = cv2.imread('F:/MOT/3D-Multi-Object-Tracker/evaluation/data/gt/davis/davis_unsupervised_val/bike-packing/00000.png')
imgInfo = img.shape
size = (imgInfo[1],imgInfo[0])
print(size)
# 参数:1 file name 2 编码器 3 帧率 4 size
videoWrite = cv2.VideoWriter('mot.mp4',cv2.VideoWriter_fourcc(*'mp4v'),10,size)# 写入对象

# 1-198张图片
for i in range(0,69):
    num = "%05d" % i    # 补0操作(5位数补0)
    # fileName = '/media/lc/LENOVO_USB_HDD/MOT/SimpleTrack/SimpleTrack/res_img/s'+str(num)+'.png'
    fileName = 'F:/MOT/3D-Multi-Object-Tracker/evaluation/data/gt/davis/davis_unsupervised_val/bike-packing/' + str(num) + '.png'
    img = cv2.imread(fileName)
    videoWrite.write(img) # 将图片写入视频
videoWrite.release()
print('end!')


# import cv2
# import glob
# img_array = []
# for filename in glob.glob('/media/lc/LENOVO_USB_HDD/MOT/SimpleTrack/SimpleTrack/res_img/*.png'):
#     # 需要将路径更改为自己存储图片的路径
#     img = cv2.imread(filename)
#     height, width, layers = img.shape
#     size = (width, height)
#     img_array.append(img)
# out = cv2.VideoWriter('mot.avi', cv2.VideoWriter_fourcc(*'DIVX'), 15, size)
# for i in range(len(img_array)):
#     out.write(img_array[i])
# out.release()

<think>好的,我现在要帮用户解决如何使用Python根据图片生成3D点云模型的问题。首先,我需要整理用户提供的引用内容,看看有哪些资源可以利用。用户提到了几个引用,其中引用[1]和[2]提到了使用Python和Meshroom进行3D重建,以及摄影测量生成点云的方法。引用[3]和[4]则涉及使用PyVista库从点云生成网格,以及处理点云数据的Python代码示例。 首先,用户的问题核心是从图片生成3D点云模型,所以需要分步骤来考虑。通常,这涉及到多视图立体视觉(MVS)或者结构光扫描等方法,但根据用户提供的引用,可能更偏向于摄影测量法。因为引用[1]和[2]都提到了通过照片生成3D模型,特别是Meshroom这样的工具,而Python可能在其中扮演自动化或后期处理的角色。 接下来,我需要考虑如何将Meshroom与Python结合使用。Meshroom本身是一个基于AliceVision框架的开源摄影测量软件,它处理图像生成点云和网格的过程。但用户可能希望用Python来控制流程或者处理生成的中间数据。例如,使用Python脚本调用Meshroom的命令行工具,或者处理Meshroom生成的点云数据。 然后,引用[3]中的代码展示了如何使用PyVista从CSV文件中的点数据生成网格。这可能在处理点云数据后有用,用户可能需要将Meshroom生成的点云导出,然后用Python进行进一步处理,比如生成网格模型。这里可能需要格式换,例如将Meshroom的输出换为NumPy数组,再使用PyVista的reconstruct_surface方法。 此外,引用[4]提到使用matplotlib的3D散点图来可视化点云,这可能是在生成点云后的可视化步骤。用户可能需要将点云数据读取到Python中,并用matplotlib或PyVista进行展示。 可能的步骤包括: 1. 使用Meshroom处理多张图像生成稀疏/稠密点云。 2. 导出点云数据为CSV或PLY格式。 3. 使用Python读取这些数据,并进行处理(如去噪、滤波)。 4. 使用PyVista或Open3D库进行表面重建,生成网格模型。 5. 可视化结果或导出为STL等格式。 需要提到的Python库可能包括Open3D、PyVista、NumPy,以及用于图像处理的OpenCV。同时,可能需要调用Meshroom的节点命令行工具,或者使用Python脚本自动化整个流程。 还需要注意,用户可能对摄影测量的原理不太清楚,需要简要说明多视图几何如何从2D图像恢复3D结构。另外,生成的模型可能需要后处理,比如网格简化、平滑等,这些也可以通过Python实现。 可能的挑战包括如何配置Meshroom与Python的集成,处理大量图像时的计算资源问题,以及点云数据的噪声处理。需要给出具体的代码示例,比如如何用Open3D读取点云数据,或者如何调用Meshroom的命令行工具。 最后,根据用户提供的引用,特别是引用[3]中的代码,可以展示如何从CSV文件生成网格,这可以作为处理点云后的步骤。同时,引用[4]中的散点图代码可以用于可视化点云。 总结来说,回答需要涵盖以下几个部分: - 摄影测量方法概述(使用Meshroom) - Python处理点云数据的库(如Open3D、PyVista) - 具体步骤和代码示例 - 可能的优化和后处理 - 相关的问题扩展 需要确保回答中的代码示例正确,符合用户提供的引用中的内容,并正确引用来源。同时,按照用户要求,使用中文,数学公式用$...$,独立公式用$$...$$,但在这个问题中可能数学公式较少,但如果有的话需要注意格式。</think>### 使用 Python 根据图像生成 3D 点云模型的实现方法 #### 1. 核心思路与工具链 通过多张照片生成 3D 点云模型的核心是**摄影测量技术**,其原理基于多视图几何和立体匹配算法[^1]。典型流程包括: - **图像采集**:围绕物体拍摄多角度照片 - **稀疏重建**:通过特征点匹配计算相机位姿 - **稠密重建**:生成密集点云 - **表面重建**:将点云换为网格模型 #### 2. 实现步骤与代码示例 **步骤1:使用 Meshroom 生成初始点云** Meshroom 是基于 AliceVision 框架的开源摄影测量工具,可通过命令行自动化处理: ```python import subprocess # 调用 Meshroom 命令行工具 meshroom_batch = "path/to/meshroom_batch.exe" input_images = "path/to/images/*.jpg" output_dir = "path/to/output" cmd = f"{meshroom_batch} --input {input_images} --output {output_dir}" subprocess.run(cmd, shell=True) ``` 生成的稠密点云会以 `.ply` 格式保存在输出目录中[^1][^3]。 **步骤2:Python 处理点云数据** 使用 `Open3D` 库进行点云处理和可视化: ```python import open3d as o3d # 读取 PLY 点云文件 pcd = o3d.io.read_point_cloud("dense_point_cloud.ply") # 点云降采样 downpcd = pcd.voxel_down_sample(voxel_size=0.01) # 统计滤波去噪 cl, ind = downpcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) # 可视化 o3d.visualization.draw_geometries([cl]) ``` **步骤3:表面重建生成网格** 使用 PyVista 进行表面重建(需安装 `pyvista` 和 `pyacvd`): ```python import numpy as np import pyvista as pv # 换 Open3D 点云为 NumPy 数组 points = np.asarray(cl.points) # 创建 PolyData 对象 cloud = pv.PolyData(points) # 表面重建 mesh = cloud.reconstruct_surface() # 保存为 STL 文件 mesh.save('reconstructed_mesh.stl') ``` #### 3. 关键 Python 库 | 库名称 | 用途 | 文档链接 | |-------------|--------------------------|-----------------------------| | Open3D | 点云处理/可视化 | http://www.open3d.org | | PyVista | 网格生成/可视化 | https://docs.pyvista.org | | Trimesh | 网格操作 | https://trimsh.org | | Colmap | 运动恢复结构(可选) | https://colmap.github.io | #### 4. 优化建议 - **图像质量**:建议使用重叠率 >80% 的清晰照片 - **点云滤波**:使用半径滤波去除离群点 - **网格简化**:对重建后的网格进行简化处理: ```python simplified_mesh = mesh.simplify(0.9) # 保留90%的三角形 ``` #### 5. 典型应用场景 - 文物数字化保护 - 工业零件逆向工程 - 建筑 BIM 建模 - 影视/游戏资产制作
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值