1、启动标注工具
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
python PPOCRLabel.py --lang ch
2、标注步骤
- 安装与运行:使用上述命令安装与运行程序。
- 打开文件夹:在菜单栏点击 “文件” - "打开目录" 选择待标记图片的文件夹[1].
- 自动标注:点击 ”自动标注“,使用PPOCR超轻量模型对图片文件名前图片状态[2]为 “X” 的图片进行自动标注。
- 手动标注:点击 “矩形标注”(推荐直接在英文模式下点击键盘中的 “W”),用户可对当前图片中模型未检出的部分进行手动绘制标记框。点击键盘Q,则使用四点标注模式(或点击“编辑” - “四点标注”),用户依次点击4个点后,双击左键表示标注完成。
- 标记框绘制完成后,用户点击 “确认”,检测框会先被预分配一个 “待识别” 标签。
- 重新识别:将图片中的所有检测画绘制/调整完成后,点击 “重新识别”,PPOCR模型会对当前图片中的所有检测框重新识别[3]。
- 内容更改:双击识别结果,对不准确的识别结果进行手动更改。
- 确认标记:点击 “确认”,图片状态切换为 “√”,跳转至下一张。
- 删除:点击 “删除图像”,图片将会被删除至回收站。
- 保存结果:用户可以通过菜单中“文件-保存标记结果”手动保存,同时也可以点击“文件 - 自动保存标记结果”开启自动保存。手动确认过的标记将会被存放在所打开图片文件夹下的Label.txt中。在菜单栏点击 “文件” - "保存识别结果"后,会将此类图片的识别训练数据保存在crop_img文件夹下,识别标签保存在rec_gt.txt中[4]
注意
[1] PPOCRLabel以文件夹为基本标记单位,打开待标记的图片文件夹后,不会在窗口栏中显示图片,而是在点击 "选择文件夹" 之后直接将文件夹下的图片导入到程序中。
[2] 图片状态表示本张图片用户是否手动保存过,未手动保存过即为 “X”,手动保存过为 “√”。点击 “自动标注”按钮后,PPOCRLabel不会对状态为 “√” 的图片重新标注。
[3] 点击“重新识别”后,模型会对图片中的识别结果进行覆盖。因此如果在此之前手动更改过识别结果,有可能在重新识别后产生变动。
[4] PPOCRLabel产生的文件放置于标记图片文件夹下,包括一下几种,请勿手动更改其中内容,否则会引起程序出现异常。
文件名 | 说明 |
Label.txt | 检测标签,可直接用于PPOCR检测模型训练。用户每保存5张检测结果后,程序会进行自动写入。当用户关闭应用程序或切换文件路径后同样会进行写入。 |
fileState.txt | 图片状态标记文件,保存当前文件夹下已经被用户手动确认过的图片名称。 |
Cache.cach | 缓存文件,保存模型自动识别的结果。 |
rec_gt.txt | 识别标签。可直接用于PPOCR识别模型训练。需用户手动点击菜单栏“文件” - "保存识别结果"后产生。 |
crop_img | 识别数据。按照检测框切割后的图片。与rec_gt.txt同时产生。 |
保存方式
PPOCRLabel支持三种保存方式:
- 自动保存:点击“文件 - 自动保存标记结果”后,用户每确认过一张图片,程序自动将标记结果写入Label.txt中。若未开启此选项,则检测到用户手动确认过5张图片后进行自动保存。
- 手动保存:点击“文件 - 保存标记结果”手动保存标记。
- 关闭应用程序保存
导出部分识别结果
针对部分难以识别的数据,通过在识别结果的复选框中取消勾选相应的标记,其识别结果不会被导出。
注意:识别结果中的复选框状态仍需用户手动点击保存后才能保留
3、数据集划分
在终端中输入以下命令执行数据集划分脚本:
cd ./PPOCRLabel # 将目录切换到PPOCRLabel文件夹下
例如:
py gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath 需要划分的路径
我的:
py gen_ocr_train_val_test.py --trainValTestRatio 6:2:2 --datasetRootPath ../train_data
参数说明:
-
trainValTestRatio
是训练集、验证集、测试集的图像数量划分比例,根据实际情况设定,默认是6:2:2
-
datasetRootPath
是PPOCRLabel标注的完整数据集存放路径。默认路径是PaddleOCR/train_data
分割数据集前应有如下结构: -
|-train_data |-crop_img |- word_001_crop_0.png |- word_002_crop_0.jpg |- word_003_crop_0.jpg | ... | Label.txt | rec_gt.txt |- word_001.png |- word_002.jpg |- word_003.jpg | ...
数据集划分之后的结构: