机器学习:《李航统计学方法》六

条件随机场的学习算法
这一章节讨论的是给定训练数据集估计条件随机场模型参数的问题,也就是条件随机场的学习问题。
他的学习方法包括极大似然估计和正则化的极大似然估计,并且具体的优化实现算法有改进的迭代尺度法IIS,梯度下降法以及拟牛顿法。
改进的迭代尺度法
在这里插入图片描述
拟牛顿法
在这里插入图片描述
条件随机场的预测算法
他是给定条件随机场P(x|y)和输入序列x,求条件概率最大的输出序列,也就是对观测序列进行标注,而条件随机场的预测算法就是著名的维特比算法。
在这里插入图片描述
统计学习方法总结
一共总结出了10种主要的统计学习方法:感知机,K近邻法,朴素贝叶斯法,决策树,逻辑斯蒂回归于最大熵模型,支持向量机,提升方法,EM算法,隐马尔可夫模型和条件随机场。
他们都有各自的优缺点
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值