条件随机场的学习算法
这一章节讨论的是给定训练数据集估计条件随机场模型参数的问题,也就是条件随机场的学习问题。
他的学习方法包括极大似然估计和正则化的极大似然估计,并且具体的优化实现算法有改进的迭代尺度法IIS,梯度下降法以及拟牛顿法。
改进的迭代尺度法
拟牛顿法
条件随机场的预测算法
他是给定条件随机场P(x|y)和输入序列x,求条件概率最大的输出序列,也就是对观测序列进行标注,而条件随机场的预测算法就是著名的维特比算法。
统计学习方法总结
一共总结出了10种主要的统计学习方法:感知机,K近邻法,朴素贝叶斯法,决策树,逻辑斯蒂回归于最大熵模型,支持向量机,提升方法,EM算法,隐马尔可夫模型和条件随机场。
他们都有各自的优缺点
机器学习:《李航统计学方法》六
最新推荐文章于 2023-05-25 09:20:32 发布