动态规划+深搜 解邮票面值设计问题
题目描述
给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤15)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值MAX,使在1至MAX之间的每一个邮资值都能得到。
例如,N=3,K=2,如果面值分别为1分、4分,则在1分~6分之间的每一个邮资值都能得到(当然还有8分、9分和12分);如果面值分别为1分、3分,则在1分~7分之间的每一个邮资值都能得到。可以验证当N=3,K=2时,7分就是可以得到的连续的邮资最大值,所以MAX=7,面值分别为1分、3分。
输入格式
2个整数,代表N,K。
输出格式
2行。第一行若干个数字,表示选择的面值,从小到大排序。
第二行,输出“MAX=S”,S表示最大的面值。
输入输出样例
输入 #1
3 2
输出 #1
1 3
MAX=7
解题思路
用f[i]表示凑出i元需要的最少邮票数,状态转移方程f[j]=min(f[j],f[j-stm[i]]+1)
再结合DFS,详见代码注释
完整代码
#include <iostream>
#include <string.h>
using namespace std;
int n,k,stm[15],res[15],maxx=0,f[5000];
//stm[i]暂存邮票面值,res[i]和 max表示输出的结果,f[i]表示凑出 i元需要的最少邮票数
//动归
int dp(int num