动态规划+深搜 解邮票面值设计问题

动态规划+深搜 解邮票面值设计问题

题目描述

给定一个信封,最多只允许粘贴N张邮票,计算在给定K(N+K≤15)种邮票的情况下(假定所有的邮票数量都足够),如何设计邮票的面值,能得到最大值MAX,使在1至MAX之间的每一个邮资值都能得到。

例如,N=3,K=2,如果面值分别为1分、4分,则在1分~6分之间的每一个邮资值都能得到(当然还有8分、9分和12分);如果面值分别为1分、3分,则在1分~7分之间的每一个邮资值都能得到。可以验证当N=3,K=2时,7分就是可以得到的连续的邮资最大值,所以MAX=7,面值分别为1分、3分。

输入格式

2个整数,代表N,K。

输出格式

2行。第一行若干个数字,表示选择的面值,从小到大排序。

第二行,输出“MAX=S”,S表示最大的面值。

输入输出样例

输入 #1

3 2

输出 #1

1 3
MAX=7

解题思路

用f[i]表示凑出i元需要的最少邮票数,状态转移方程f[j]=min(f[j],f[j-stm[i]]+1)

再结合DFS,详见代码注释

完整代码

#include <iostream>
#include <string.h>
using namespace std;
int n,k,stm[15],res[15],maxx=0,f[5000];
//stm[i]暂存邮票面值,res[i]和 max表示输出的结果,f[i]表示凑出 i元需要的最少邮票数 

//动归
int dp(int num
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值