- 博客(19)
- 资源 (1)
- 收藏
- 关注
原创 Java基本数据类型以及位运算
1 基本数据类型Java基本类型共有八种:字符类型char,布尔类型boolean以及数值类型byte、short、int、long、float、double。数值类型又可以分为整数类型byte、short、int、long和浮点数类型float、double。简单类型booleanbytecharshortIntlongfloatdouble二进制位数18161632643264最大存储数据量/256/655362^322^64/
2021-09-27 14:58:30
515
1
转载 Fisher Vector Encoding and Gaussian Mixture Model
简介 这篇文章主要介绍了Fisher Vector Encoding and Gaussian Mixture Model(示例代码)以及相关的经验技巧,文章约4946字,浏览量204,点赞数3,值得参考!一、背景知识1.Discriminant Learning Algorithms(判别式方法) and Generative Learning Algorithms(生成式方法)现在常见的模式识别方法有两种,一种是判别式方法;一种是生成式方法。可以这样理解生成式方法主要是数据是如何生成的,从统计
2021-09-15 16:25:19
230
原创 局部变量和成员变量的区别
1.定义的位置不—样【重点】局部变量:在方法的内部成员变量:在方法的外部,直接写在类当中2.作用范围不一样【重点】局部变量:只有方法当中才可以使用,出了方法就不能再用成员变量:整个类全都可以通用。3.默认值不—样【重点】局部变量:没有默认值,如果需要使用,必须手动进行赋值成员变量:如果没有赋值,会有默认值,规则和数组一样public class Demo01VariableDifference { string name;//成员变量 public void methodA() {
2021-08-22 09:20:09
146
原创 Java 中区分length,length(),size()
本科学Java都用Eclipse的自动补全来查看**length,length(),size()**到底用哪一个,但当刷leetcode时就被这三者弄晕了,不知道究竟弄哪一个。在此处仔细区分一下三者的用法。length 对象是 数组,即[]length() 对象是 字符串,即“ ”size() 对象是泛型集合,例如:TreeSet ,ArrayList等...
2021-07-19 10:27:18
245
原创 Java StringBuffer 和 StringBuilder 类使用区分
对比String 类StringBuffer 和 StringBuilder 类的对象能够被多次的修改,并且不产生新的未使用对象。使用区分StringBuilder 类和 StringBuffer 之间的最大不同在于 StringBuilder 的方法不是线程安全的(不能同步访问)。StringBuilder 相较于 StringBuffer 有速度优势,所以多数情况下建议使用 StringBuilder 类。简要说明:应用程序要求线程安全的情况下,则必须使用 StringBuffer 类其他情
2021-07-19 10:26:43
109
原创 【论文阅读】Look-into-Object: Self-supervised Structure Modeling for Object Recognition
提出一个对象范围学习模块,用于根据同一类别中的实例之间共享的可视化模式定位对象。然后,我们设计了一个空间情境学习模块,通过预测物体在范围内的相对位置来建模物体的内部结构。这两个模块可以很容易地在训练期间插入任何骨干网,并在推理时分离。
2021-06-17 10:40:43
1014
原创 【Java笔记】liuyubobobo数据结构-数组
数组索引从0开始数组的索引既可以有语意也可以没有Java中的数组并没有添加,删除的功能,因此需要基于Java的数组,二次封装属于我们自己的数组类。添加增删改查的功能。目前设计的结构有一个很大的问题:只能放置int类型的数据,那么这就需要用到泛型。Array支持各种对象类动态数组索引从0开始package cn.edu.hfut.day01.demo01;/** * @author AydenFan */public class Main { public static void
2021-05-29 20:09:07
287
原创 【论文阅读】Look-into-Object: Self-supervised Structure Modeling for Object Recognition
【论文阅读】Look-into-Object: Self-supervised Structure Modeling for Object Recognition摘要具体实现分类模块对象范围学习模块空间背景学习模块摘要Most object recognition approaches predominantly focus on learning discriminative visual patterns while overlooking the holistic object structure
2021-05-20 16:16:23
492
原创 【论文阅读】Weakly Supervised Data Augmentation Network for Fine-Grained Visual Classification
【论文阅读】Weakly Supervised Data Augmentation Network for Fine-Grained Visual Classification摘要具体实现弱监督注意学习空间表示法双线性池化摘要Data augmentation is usually adopted to increase the amount of training data, prevent overfitting and improve the performance of deep models.
2021-05-14 15:58:33
782
原创 【论文阅读】BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition
【论文阅读】BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition摘要背景具体实现总体框架采样策略共享权重累计学习推理阶段消融实验代码实现(自己参照源码写的粗糙的网络)摘要Our work focuses on tackling the challenging but natural visual recognition task of long-tailed data distr
2021-04-13 10:23:38
1324
1
原创 【Debug记录】深度学习测试结果每次都不一样?
之前每次跑完实验作测试时发现相同的模型参数,相同的模型,做完测试结果总是在变化,以为很正常但没怎么在意。今天细想参数模型数据都一样不可能会变化,问了师兄才知道代码哪里出了问题。解决过程:1.打印测试结果,发现数值变化挺大2.查看随机种子设置,没发现问题3.查找代码其他随机化的地方最终解决:测试集加载时用了训练集的transform,之前写代码忘记修改。。。...
2021-04-07 15:36:27
2906
原创 【论文阅读】Cross-X Learning for Fine-Grained Visual Categorization
【论文阅读】Cross-X Learning for Fine-Grained Visual Categorization摘要具体实现OSME模块跨类别跨语义正则化(C3SC^{3} SC3S)跨层正则化(CLCLCL)摘要Recognizing objects from subcategories with very subtle differences remains a challenging task due to the large intra-class and small inter-cl
2021-04-06 22:01:32
1584
原创 【论文阅读】The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification
【论文阅读】The Devil is in the Channels: Mutual-Channel Loss for Fine-Grained Image Classification摘要具体实现判别组件差异性组件代码摘要Key for solving fine-grained image categorization is finding discriminate and local regions that correspond to subtle visual traits. Great str
2021-04-06 08:39:28
1056
2
原创 【论文阅读】Learning Semantically Enhanced Feature for Fine-Grained Image Classification
[论文解读]Learning Semantically Enhanced Feature for Fine-Grained Image ClassificationAbstract本文旨在为细粒度图像分类(FGIC)提供一种计算量小但效果好的方法。与以往依赖复杂part定位模块的方法不同,我们的方法通过增强全局特征子特征的语义来学习细粒度特征。具体地说,我们首先通过通道排列将CNN的特征频道分成不同的组来实现子特征语义。同时,为了提高子特征的可区分性,通过加权组合正则化,引导分组在可区分性较强的obje
2021-04-05 09:09:11
1104
2
转载 NearIPS:Rethinking the Value of Labels for Improving Class-Imbalanced Learning
Rethinking the Value of Labels for Improving Class-Imbalanced Learning知乎:NeurIPS 2020 | 数据类别不平衡/长尾分布?不妨利用半监督或自监督学习Author:YuZhe Yang
2020-11-14 11:10:49
766
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人