2022(一等奖)D926刘家峡库区潜在滑坡InSAR识别与分析

该研究利用Sentinel-1A数据和SBAS-InSAR技术,监测2019-2022年间刘家峡库区的地表形变,识别潜在滑坡。结合地形、地质等因素,分析滑坡机理,识别出15处潜在滑坡隐患。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作品介绍

1 应用背景

滑坡是普遍存在于世界各地山区的主要灾害之一,严重威胁着人类的生命财产安全和自然环境。滑坡不但会直接破坏人类生命财产安全和建筑物,而且还会造成堰塞湖等次生灾害,进而对人类的生命财产安全和基础设施等造成二次破坏。滑坡也是发生次数最多、损失最大的地质灾害,西太平洋的日本、中国台湾省、青藏高原南缘喜马拉雅地区是亚洲滑坡灾害的高发区,我国也是世界上滑坡最为严重的地区之一。2021年,全国共发生地质灾害4772起,其中滑坡,滑坡2335起、崩塌1746起、泥石流374起、地面塌陷285起、地裂缝21起、地面沉降11起,滑坡占全年地质灾害总数的 48.93%。

合成孔径雷达干涉测量(Interferometric Synthetic Aperture Radar, InSAR)作为一项新的空间对地观测技术,具有全天候、全天时、范围广、间隔短;且形变探测精度达到厘米级甚至毫米级等优点,在大范围形变监测及滑坡普查中发挥着重要作用。Berardino等提出了多幅主影像组合的小基线集技术SBAS-InSAR(Small Baseline Subset Interferometric Synthetic Aperture Radar, SBAS-InSAR),通过设置短时空基线阈值的方法,组合得到较多的差分干涉对,从而提高干涉图的时空相干性,利用奇异值分解和最小二乘法求解时序形变,该技术在滑坡识别方面得到广泛应用。如戴可人等采用SBAS-In

### 基于ENVI的滑坡提取方法 #### 方法概述 滑坡是一种常见的地质灾害,尤其是在地形复杂的区域。利用遥感技术图像处理软件可以有效监测提取滑坡信息。ENVI是一款功能强大的遥感图像处理软件,支持多种数据源分析方法。对于滑坡提取,可以通过以下几种关键技术实现: 1. **影像预处理** 使用ENVI进行影像增强、去噪以及几何校正等操作,提高影像的质以便后续分析。例如,针对无人机获取的影像中存在的模糊、曝光不足等问题,可采用辐射校正空间滤波技术来改善影像质[^1]。 2. **特征提取** 利用ENVI内置的分类工具(如监督分类支持向机)或者光谱指数计算模块,提取滑坡相关的地表变化特征。例如,NDVI(归一化植被指数)可以帮助区分裸露土壤其他覆盖物;而SAR数据则能够捕捉到地面形变的信息[^3]。 3. **时间序列分析** 如果有多个时期的遥感影像,则可通过对比不同时间段内的土地覆被差异发现潜在滑坡迹象。这一步骤需要用到ENVI的时间序列分析功能,结合InSAR技术检测微小的地表移动情况[^2]。 4. **模型构建验证** 构建适合特定地区的滑坡易发性预测模型,并通过实地调查数据对其进行精度评价。此阶段可能涉及机器学习算法的应用,比如随机森林或神经网络等高级统计学方法。 #### 实现步骤说明 以下是具体的操作指南: - 加载所需的数据集进入ENVI环境; - 对原始影像实施必要的预处理措施,包括大气效应消除、投影转换及重采样等工作流程; - 应用边缘探测算子找出疑似崩塌边界线位置; - 计算各类专题地图层并叠加显示结果用于综合评判风险等级分布状况; - 导出最终成果文件供进一步决策参考之需。 ```python # 示例代码展示如何加载栅格数据至Python环境中以辅助理解整个过程逻辑结构 import rasterio as rio with rio.open('path_to_your_image.tif') as src: array = src.read(1) # Read the first band of your image print(array.shape) ``` ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JGiser

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值