DP学习——01背包

题目

有 N 件物品和一个容量是 V 的背包。每件物品只能使用一次。
第 i 件物品的体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。
接下来有 N 行,每行两个整数 vi,wi,用空格隔开,分别表示第 i 件物品的体积和价值。

输出格式
输出一个整数,表示最大价值。

数据范围

0<N,V≤1000
0<vi,wi≤1000

输入样例

4 5
1 2
2 4
3 4
4 5

输出样例:

8

解法

一、朴素DP

状态表示

用一个二维的状态 f ( i , j ) f(i, j) f(i,j),表示在前 i i i个物品中选择,在满足总体积不超过 j j j的条件下能够得到的最大价值

状态划分和计算

对于第 i i i个物品,先判断第 i i i个物品是否装得下:

  • j < v i j<v_i j<vi:装不下,则在前 i i i个物品中选择,就相当于在前 i − 1 i-1 i1个物品中选择,于是有:

f ( i , j ) = f ( i − 1 , j ) , j < v i f(i,j)=f(i-1,j),j<v_i f(i,j)=f(i1,j),j<vi

  • j ≥ v i j\ge v_i jvi:装的下,则要考虑装和不装两个选择,取 m a x max max。选择不装的情况也就是和装不下一样的效果,接下来重点分析一下选择装的情形:

    此时我们要知道, i i i个物品是一定在这个状态里面的,这是不变的部分( v i v_i vi),而对前面 i − 1 i-1 i1个物品的选择是可变的,那么我们要怎么样选择前面这 i − 1 i-1 i1个物品呢?

    显然,如果要使得装入物品 i i i后为价值最大,那么对前面这 i − 1 i-1 i1个物品的选择也是要最优的,去掉不变部分的影响,对前面这 i − 1 i-1 i1个物品的选择是在 j − v i j-v_i jvi的体积限制下进行的,能得到最大的价值就是 f ( i − 1 , j − v i ) f(i-1, j-v_i) f(i1,jvi),这样一来就能得到:
    f ( i , j ) = m a x ( f ( i − 1 , j ) , f ( i − 1 , j − v i ) + w i ) , j ≥ v i f(i,j) = max(f(i-1,j),f(i-1,j-v_i)+w_i),j\ge v_i f(i,j)=max(f(i1,j),f(i1,jvi)+wi),jvi

将所有情况综合,就能得到状态转移方程:
f ( i , j ) = { f ( i − 1 , j ) , j < v i m a x ( f ( i − 1 , j ) , f ( i − 1 , j − v i ) + w i ) , j ≥ v i f(i,j)=\begin{cases} f(i-1,j),j<v_i\\ max(f(i-1,j),f(i-1,j-v_i)+w_i),j\ge v_i \end{cases} f(i,j)={f(i1,j),j<vimax(f(i1,j),f(i1,jvi)+wi),jvi
代码如下

Scanner scanner = new Scanner(System.in);
int[] v = new int[1001];
int[] w = new int[1001];
int[][] f = new int[1001][1001];
int N, V;
N = scanner.nextInt();
V = scanner.nextInt();
for (int i = 1; i <= N; i++) {
    v[i] = scanner.nextInt();
    w[i] = scanner.nextInt();
}
for (int i = 1; i <= N; i++) {
    // 这里体积从0开始是合法的,因为不选任何物品的情况下满足这个体积限制
    for (int j = 0; j <= V; j++) {
        f[i][j] = f[i - 1][j];
        if (j >= v[i]) {
            f[i][j] = Math.max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
}
System.out.println(f[N][V]);

二、优化

注意:所有对DP的优化都是对原代码的等价变形,也就是仅在代码逻辑层面上进行优化,而保留了最初的核心思想!

1、降维优化

观察状态转移方程
f ( i , j ) = { f ( i − 1 , j ) , j < v i m a x ( f ( i − 1 , j ) , f ( i − 1 , j − v i ) + w i ) , j ≥ v i f(i,j)=\begin{cases} f(i-1,j),j<v_i\\ max(f(i-1,j),f(i-1,j-v_i)+w_i),j\ge v_i \end{cases} f(i,j)={f(i1,j),j<vimax(f(i1,j),f(i1,jvi)+wi),jvi
我们可以发现,选到第 i i i个物品的时候,解只和选择 i − 1 i-1 i1个物品的情况有关,所以我们只需要关注最新的两类状态——前 i − 1 i-1 i1个物品的状态和前 i i i个物品的状态即可。这样我们就可以将二维的 f ( i , j ) f(i,j) f(i,j)压缩成一维的 f ( j ) f(j) f(j),每轮都用旧的 f f f来更新新的 f f f(滚动数组的思想),从而实现 i − 1 i-1 i1 i i i的状态转移。

于是有了如下代码:

int[] f = new int[1001];
// ....
for (int i = 1; i <= N; i++) {
    for (int j = 0; j <= V; j++) {
        f[j] = f[j];
        // f[i][j] = f[i - 1][j];
        if (j >= v[i]) {
            f[i][j] = Math.max(f[j], f[j - v[i]] + w[i]);
            // f[i][j] = Math.max(f[i - 1][j], f[i - 1][j - v[i]] + w[i]);
        }
    }
}
System.out.println(f[V]);

但是这个代码还有一个问题,在将 f ( i − 1 , j − v i ) f(i-1,j-v_i) f(i1,jvi)处理成 f ( j − v i ) f(j-v_i) f(jvi)后, f ( j − v i ) f(j-v_i) f(jvi)并不等价于 f ( i − 1 , j − v i ) f(i-1,j-v_i) f(i1,jvi),而是等价于 f ( i , j − v i ) f(i,j-v_i) f(i,jvi)。原因在于更新状态时,我们对 f f f数组进行从左向右的遍历,指针左侧为前 i i i个物品的状态,右侧还未更新的是前 i − 1 i-1 i1个物品的状态, f ( j − v i ) f(j-v_i) f(jvi)是在 f ( j ) f(j) f(j)左侧的,所以不属于旧状态。为此,我们需要将遍历顺序调反,以保障等价性:

int[] f = new int[1001];
// ....
for (int i = 1; i <= N; i++) {
    // 反向遍历f,另外可以将"是否装的下"的判断直接移到循环判断里去,装不下的话就不继续装了
    for (int j = V; j >= v[i]; j--) 
            f[j] = Math.max(f[j], f[j - v[i]] + w[i]);
}
System.out.println(f[V]);
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值