问题描述
小明几乎每天早晨都会在一家包子铺吃早餐。他发现这家包子铺有N种蒸笼,其中第i种蒸笼恰好能放Ai个包子。每种蒸笼都有非常多笼,可以认为是无限笼。
每当有顾客想买X个包子,卖包子的大叔就会迅速选出若干笼包子来,使得这若干笼中恰好一共有X个包子。比如一共有3种蒸笼,分别能放3、4和5个包子。当顾客想买11个包子时,大叔就会选2笼3个的再加1笼5个的(也可能选出1笼3个的再加2笼4个的)。
当然有时包子大叔无论如何也凑不出顾客想买的数量。比如一共有3种蒸笼,分别能放4、5和6个包子。而顾客想买7个包子时,大叔就凑不出来了。
小明想知道一共有多少种数目是包子大叔凑不出来的。
输入格式
第一行包含一个整数N。(1 <= N <= 100)
以下N行每行包含一个整数Ai。(1 <= Ai <= 100)
输出格式
一个整数代表答案。如果凑不出的数目有无限多个,输出INF。
样例输入
2
4
5
样例输出
6
样例输入
2
4
6
样例输出
INF
样例说明
对于样例1,凑不出的数目包括:1, 2, 3, 6, 7, 11。
对于样例2,所有奇数都凑不出来,所以有无限多个。
数据规模和约定
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
package lanQiao;
import java.util.Scanner;
/*包子凑数
* 当n个数的最大公约数不为1的时候,凑不到的数的个数是无数个(扩展欧几里德)即输出INF。
*
* 根据题意最多会有10000个数,所以只需遍历1到10000的数
* 利用dp数组记录每一个值,dp[i]=1表示数i能够被凑成
* 如果数i能够被凑成,那么数i+a[j]也一定顶能能够被凑成
*
* */
public class PREV_36 {
static int n;
static int ans;
public static void main(String[] args) {
// TODO Auto-generated method stub
int n;
int ans=0;
int []dp=new int[10001];
Scanner input=new Scanner(System.in);
n=input.nextInt();
int []a=new int[n];
int ii=0;
while(ii<n)
{
a[ii]=input.nextInt();
ii++;
}
if(hz(a))//判断互质
System.out.println("INF");
else
{
dp[0]=1;
for(int i=0;i<a.length;i++)
{
for(int j=0;j+a[i]<10001;j++)
{
if(dp[j]==1)
dp[j+a[i]]=1;
}
}
for(int i=1;i<10001;i++)
{
if(dp[i]!=1)
ans++;
}
System.out.println(ans);
}
}
//判断是否互质
public static boolean hz(int[]a)
{
//看是否有除1之外的公约数
for(int i=2;i<a[0];i++)
{ int k=0;
for(int j=0;j<a.length;j++)
{
if(a[j]%i==0)
k++;
}
if(k==a.length)
{return true;}
}
return false;
}
}