机器学习
文章平均质量分 92
飞天小牛肉
公众号 @飞天小牛肉
展开
-
吴恩达《机器学习》课程笔记全汇总
???? 本节是根据吴恩达老师的《Machine Learning》课程做的笔记和总结,并未涉及复杂的数学推导和代码,可用来对机器学习做一个初步的认识和了解。1 - Introduction to Machine Learning2 - 模型评估与选择3 - 线性回归4 - 逻辑回归 + 正则化5 - 神经网络6 - 支持向量机 SVM7 - 聚类 (K-means 算法) + 降维 (PCA 算法)8 - 异常检测 + 推荐系统9 - 大规模机器学习+图片文字识别✍ 吴恩达 Cou原创 2020-09-30 16:53:52 · 7880 阅读 · 14 评论 -
朴素贝叶斯算法 — 超详细公式讲解+代码实例
朴素贝叶斯法是基于贝叶斯定理与特征条件独立性假设的分类方法。对于给定的训练集,首先基于特征条件独立假设学习输入输出的联合概率分布(朴素贝叶斯法这种通过学习得到模型的机制,显然属于生成模型);然后基于此模型,对给定的输入 x,利用贝叶斯定理求出后验概率最大的输出 y。学习朴素贝叶斯算法之前,我们先搞定下面这些基本概念和数学公式原创 2020-08-19 21:56:58 · 70033 阅读 · 13 评论 -
机器学习 kNN 算法之图解 kd 树
???? 本文收录于Github仓库,欢迎前来 star 呀~ https://github.com/Veal98/CS-Wiki???? 在线阅读地址/更好的阅读体验请移步:https://veal98.gitee.io/cs-wiki/4. k 近邻算法的实现 2:kd 树① 概述实现 k 近邻算法时,主要考虑的问题就是如何对训练数据进行快速 k 近邻搜索。k 近邻法最简单的实现方法是线性扫描 linear scan,这需要计算输入实例与其他每个训练实例的距离,在训练集很大的时候,这原创 2020-08-15 23:07:55 · 780 阅读 · 0 评论 -
【统计学习方法 • 从无到有系列】— 【三】k 近邻算法 kNN
???? 本文收录于Github仓库,欢迎前来 star 呀~ https://github.com/Veal98/CS-Wiki???? 在线阅读地址/更好的阅读体验请移步:https://veal98.gitee.io/cs-wiki/???? k 近邻算法 kNN???? 思维导图1. k 近邻算法描述✅ k 近邻算法 k-nearest neighbor, kNN 可简单描述为:存在一个带标签的训练样本集,输入没有标签的新数据后,将新数据的每个特征和样本集中的数据对应的特征进原创 2020-08-15 23:03:51 · 389 阅读 · 0 评论 -
【统计学习方法 • 从无到有系列】— 【二】感知机
???? 本文收录于Github仓库,欢迎前来 star 呀~ https://github.com/Veal98/CS-Wiki???? 在线阅读地址/更好的阅读体验请移步:https://veal98.gitee.io/cs-wiki/???? 感知机???? 思维导图1. 感知机模型① 概述???? 感知机是二类分类的线性分类模型,属于判别模型。其输入为实例的特征变量,输出为实例的类别(仅取 +1 和 -1 两个值)。感知机预测是用学习得到的感知机模型对新的输入实例进行分类原创 2020-08-15 23:02:31 · 243 阅读 · 0 评论 -
【统计学习方法 • 从无到有系列】— 【一】统计学习及监督学习概论
???? 本系列准备将吴恩达老师视频笔记和机器学习实战与《统计学习方法 - 第 2 版》中的内容进行综合,摒弃不加思考的笔记记录,从无到有,突出公式的推导过程以及对应的代码解析,力求完善机器学习的知识体系,夯实基础。原创 2020-08-10 22:07:52 · 736 阅读 · 0 评论 -
【机器学习实战】— 3 - 基于概率论的分类方法:朴素贝叶斯
贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。本章首先介绍贝叶斯分类算法的基础——贝叶斯定理。最后,我们通过实例来讨论贝叶斯分类的中最简单的一种: 朴素贝叶斯分类。原创 2020-08-02 18:14:12 · 1143 阅读 · 0 评论 -
【机器学习实战】— 2 - 决策树 Decision Tree
一个叫做 "二十个问题" 的游戏,游戏的规则很简单: 参与游戏的一方在脑海中想某个事物,其他参与者向他提问,只允许提 20 个问题,问题的答案也只能用对或错回答。问问题的人通过推断分解,逐步缩小待猜测事物的范围,最后得到游戏的答案。决策树的工作原理与这 二十个问题 相似,用户输入一系列的数据,然后给出游戏的答案。决策树(Decision Tree)算法是一种基本的分类与回归方法,是最经常使用的数据挖掘算法之一。我们这章节只讨论用于分类的决策树。原创 2020-08-02 18:10:05 · 844 阅读 · 0 评论 -
【机器学习实战】— 1 - k近邻算法
众所周知,电影可以按照题材进行分类,然而题材本身是如何定义的?由谁来判定某部电影属于哪个题材?比如说爱情片中的 kiss 镜头更多,而动作片中的打斗场景更加频繁,基于此类场景在某部电影中出现的次数来进行电影分类。本章我们将基于此使用 k-近邻算法构造程序,自动划分电影的题材类型。????原创 2020-08-02 18:07:26 · 1112 阅读 · 0 评论