数学公式(一)

数学公式(一)

不等式

  • 基本不等式拓展: 2 a b a + b ≤ a b ≤ a + b 2 ≤ a 2 + b 2 2 ( 当且仅当 a = b 时取“ = ”号 ) \frac{{2ab}}{{a+b}} \le \sqrt{{ab}} \le \frac{{a+b}}{{2}} \le \sqrt{{\frac{{a\mathop{{}}\nolimits^{{2}}+b\mathop{{}}\nolimits^{{2}}}}{{2}}}} \left( \text{当}\text{且}\text{仅}\text{当}a=b\text{时}\text{取}\text{“}=\text{”}\text{号} \right) a+b2abab 2a+b2a2+b2 (a=b=)
  • 均值不等式: H n = n ∑ i = 1 n 1 x i = n 1 x 1 + 1 x 2 + ⋯ + 1 x n ( 调 和 平 均 数 ) G n = ∏ i = 1 n x i n = x 1 x 2 ⋯ x n n ( 几 何 平 均 数 ) A n = 1 n ∑ i = 1 n x i = x 1 + x 2 + ⋯ + x n n ( 算 术 平 均 数 ) Q n = ∑ i = 1 n x i 2 = x 1 2 + x 2 2 + ⋯ + x n 2 n ( 平 方 平 均 数 ) H n ≤ G n ≤ A n ≤ Q n H_{n}=\frac{n}{\sum \limits_{i=1}^{n}\frac{1}{x_{i}}}= \frac{n}{\frac{1}{x_{1}}+ \frac{1}{x_{2}}+ \cdots + \frac{1}{x_{n}}}(调和平均数)\\ G_{n}=\sqrt[n]{\prod \limits_{i=1}^{n}x_{i}}= \sqrt[n]{x_{1}x_{2}\cdots x_{n}}(几何平均数)\\ A_{n}=\frac{1}{n}\sum \limits_{i=1}^{n}x_{i}=\frac{x_{1}+ x_{2}+ \cdots + x_{n}}{n}(算术平均数)\\ Q_{n}=\sqrt{\sum \limits_{i=1}^{n}x_{i}^{2}}= \sqrt{\frac{x_{1}^{2}+ x_{2}^{2}+ \cdots + x_{n}^{2}}{n}}(平方平均数)\\ \\ H_{n}\leq G_{n}\leq A_{n}\leq Q_{n} Hn=i=1nxi1n=x11+x21++xn1n()Gn=ni=1nxi =nx1x2xn ()An=n1i=1nxi=nx1+x2++xn()Qn=i=1nxi2 =nx12+x22++xn2 ()HnGnAnQn
    参考调和平均数-几何平均数-算术平均数-平方平均数的4种经典证明
  • 柯西不等式: ( ∑ k = 1 n a k b k )  ⁣ ⁣ 2 ≤ ( ∑ k = 1 n a k 2 ) ( ∑ k = 1 n b k 2 ) \left( \sum_{k=1}^n a_k b_k \right)^{\!\!2}\leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right) (k=1nakbk)2(k=1nak2)(k=1nbk2)
  • 绝对值不等式: ∣ a ∣ − ∣ b ∣ ≤ ∣ a + b ∣ ≤ ∣ a ∣ + ∣ b ∣ \left| a \left| - \left| b \left| \le \left| a+b \left| \le \left| a \left| + \left| b \right| \right. \right. \right. \right. \right. \right. \right. \right. aba+ba+b
  • 排序不等式:设 a 1 ≤ a 2 ≤ ⋯ ≤ a n a_1\leq a_2 \leq \cdots \leq a_n a1a2an b 1 ≤ b 2 ≤ ⋯ ≤ b n b_1\leq b_2 \leq \cdots \leq b_n b1b2bn, c 1 , c 2 ⋯ c n c_1,c_2 \cdots c_n c1,c2cn为b的任意序列,则有: a 1 b n + ⋯ + a n b 1 ≤ a 1 c 1 + ⋯ + a n c n ≤ a 1 b 1 + ⋯ + a n b n a_1b_n+\cdots +a_nb_1 \leq a_1c_1+\cdots +a_nc_n \leq a_1b_1+\cdots + a_nb_n a1bn++anb1a1c1++ancna1b1++anbn
    即逆序和 ≤ \leq 乱序和 ≤ \leq 正序和
  • 伯努利不等式 :
    若 a > 0 , n > 1 , 则有 \text{若}a > 0,n > 1,\text{则}\text{有} a>0,n>1,
    a n > 1 + n ( a − 1 ) (1) \mathop{{a}}\nolimits^{{n}} > 1+n{ \left( {a-1} \right) } \tag {1} an>1+n(a1)(1)
    当 a = b 1 n , b > 1 时,有 \text{当}a=\mathop{{b}}\nolimits^{{\frac{{1}}{{n}}}},b > 1\text{时}\text{,}\text{有} a=bn1,b>1
    b 1 n − 1 < b − 1 n (2) {\mathop{{b}}\nolimits^{{\frac{{1}}{{n}}}}-1 < \frac{{b-1}}{{n}}} \tag{2} bn11<nb1(2)

级数

  • 欧拉公式: e i θ = cos ⁡ θ + i sin ⁡ θ e^{i\theta }=\cos \theta + i \sin \theta eiθ=cosθ+isinθ
    特别的当 θ = π 时 : \theta = \pi 时: θ=π e i π + 1 = 0 e^{i\pi} + 1=0 eiπ+1=0
    证明:
    在这里插入图片描述

级数

  • f ( x ) , g ( x ) 在 [ a , b ] f(x),g(x)在[a,b] f(x),g(x)[a,b]连续: [ ∫ a b f ( x ) g ( x ) d x ] 2 ⩽ ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x \left[\int_{a}^{b} f(x) g(x) \mathrm{d} x\right]^{2} \leqslant \int_{a}^{b} f^{2}(x) \mathrm{d} x \int_{a}^{b} g^{2}(x) \mathrm{d} x [abf(x)g(x)dx]2abf2(x)dxabg2(x)dx
    证明:若 f ( x ) ≡ 0 f(x)\equiv 0 f(x)0 显然成立
    f ( x ) ≢ 0 f(x)\not\equiv 0 f(x)0 ∫ a b f 2 ( x ) d x > 0 \int_{a}^{b}f^2(x)dx>0 abf2(x)dx>0,令 φ ( t ) = ∫ a b [ t f ( x ) + g ( x ) ] 2 d x = t 2 ∫ a b f 2 ( x ) d x + 2 t ∫ a b f ( x ) g ( x ) d x + ∫ a b g 2 ( x ) d x \varphi(t)=\int_{a}^{b}[t f(x)+g(x)]^{2} \mathrm{d} x=t^{2} \int_{a}^{b} f^{2}(x) \mathrm{d} x+2 t \int_{a}^{b} f(x) g(x) \mathrm{d} x+\int_{a}^{b} g^{2}(x) \mathrm{d} x φ(t)=ab[tf(x)+g(x)]2dx=t2abf2(x)dx+2tabf(x)g(x)dx+abg2(x)dx
    φ ( t ) \varphi(t) φ(t)为二次多项式,在R上满足 φ ( t ) ⩾ 0 \varphi(t) \geqslant 0 φ(t)0 Δ = b 2 − 4 a c = [ 2 ∫ a b f ( x ) g ( x ) d x ] 2 − 4 ∫ a b f 2 ( x ) d x ∫ a b g 2 ( x ) d x ⩽ 0 \Delta =\mathop{{b}}\nolimits^{{2}}-4ac=\left[2\int_{a}^{b} f(x) g(x) \mathrm{d} x\right]^{2} -4 \int_{a}^{b} f^{2}(x) \mathrm{d} x \int_{a}^{b} g^{2}(x) \mathrm{d} x\leqslant 0 Δ=b24ac=[2abf(x)g(x)dx]24abf2(x)dxabg2(x)dx0
  • ∫ a b f ( x ) d x = 1 \int_{a}^{b}f(x)dx=1 abf(x)dx=1则有: [ ∫ a l x f ( x ) d x ] 2 = [ ∫ a b x f ( x ) ⋅ f ( x ) d x ] 2 ⩽ ∫ a b x 2 f ( x ) d x ⋅ ∫ a b f ( x ) d x = ∫ a b x 2 f ( x ) d x \left[\int_{a}^{l} x f(x) \mathrm{d} x\right]^{2}=\left[\int_{a}^{b} x \sqrt{f(x)} \cdot \sqrt{f(x)} \mathrm{d} x\right]^{2} \leqslant \int_{a}^{b} x^{2} f(x) \mathrm{d} x \cdot \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} x^{2} f(x) \mathrm{d} x [alxf(x)dx]2=[abxf(x) f(x) dx]2abx2f(x)dxabf(x)dx=abx2f(x)dx

参考

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值